ㄴEO

LEO LEO GROUP PUMP（ZHEJIANG）CO．．．LTD．（Stock code：002131）
No．1，3rd Street，East Industry Center，Wenling，Zhejiang，China， 317511
Tel：＋86－576－8998 6360 Fax：＋86－576－89989898 E－mail：export＠leogroup．cn www．leogroup．cn

Pumps

－Stainless Steel Vertical Multistage Pump
－Stainless Steel Horizontal Multistage Pump
－Stainless Steel Multistage Pump
－Semi－open Impeller Stainless Steel Centrifugal Pump
－Stainless Steel Standard Centrifugal Pump
－Pressure Booster System

LEO GROUP PUMP（ZHEJIANG）CO．，LTD．

The first company exported pumps to EU in pump industry and established Taizhou LEO Electrical Co., Ltd

Recognized as a National
Hi-tech Enterprise

China Famous Brand"

Relocated to smart plant with total area 300 thousand m^{2}

Awarded as intelligent plant by MIIT, P.R.C

TO KNOW LEO

LEO Group (got listed in Shenzhen Stock Exchange with stock code 002131) is a national high-tech enterprise engaged in R\&D, design, manufacture, sales and service of all series pumps and systems. LEO is the first listed company in Chinese pump industry, one of the drafters of pump industry standard and the vice president of drainage and irrigation machinery branch of China Agricultural machinery industry association as well. "LEO" has been identified as "China Famous Brand" by the State Administration of Industry and Commerce.It is mentionable that LEO has the only stateauthorized technical center in pump industry.

We have set up many production and sales subsidiaries in key regional markets such as America, Hungary, Belgium, Thailand, Indonesia, United Arab Emirates and Bangladesh and authorized exclusive distribution agency in over 100 countries.

Our products have been sold to over 140 countries and regions, such as Europe, North America, Central \&South America, Southeast Asia, Middle East, Africa, Oceania ,etc., which play a crucial role in water conservancy, water resources, electric power construction, petrochemical industry, mining, metallurgy, fire-fighting, HVAC(Heating, Ventilation and Air Conditioning), agricultural irrigation, civil water supply and drainage, etc.

LEO has currently two industrial groups respectively for industrial and civilian applications. With four manufacturing bases in Wenling of Zhejiang, Xiangtan of Hunan, Wuxi of Jiangsu and Dalian of Liaoning, LEO possesses a solid foundation to become a world-class pump and system solution provider rapidly.

With over 70 years' professional technology, LEO will continue her consistent creativity and development ability in each pump for human's health.

NUMEROUS MEMBERS, ONE FAMILY

Based on market segment, LEO's pump business is divided into 5 fields, namely water conservancy \& water resources, power station, petrochemical industry, mining \& metallurgical industry and civilian applications. For each field there's a professional manufacturing base with relevant professional sales teams. Three subsidiary companies, Wuxi LEO Xi Pump, LEO Group Pump (Hunan) and Dalian LEO Pump are all well-known industrial pump manufacturers in their own fields. With over 70 years' industrial pump manufacturing experience and extraordinary comprehensive strength, LEO has become a leading company among all industrial pump manufacturers in China.

Pump Manufacturing Base for Domestic and Commercial Applications (Wenling City, Zhejiang Province)

LEO Group Pump (Zhejiang) Co., Ltd, a wholly-owned subsidiary of LEO Group Co., Ltd, is the core base for $R \& D$, manufacturing, sales and service of domestic and commercial pumps for family water supply, pipeline boosting, garden and field irrigation, HVAC, etc.

The leading products include peripheral pump, jet pump, centrifugal pump, garden submersible pump, fountain pump,pool pump, doestic lifting station, gasoline engine pump, diesel engine pump, submersible pump, submersible borehole pump, submersible sewage pump,stainless steel vertical multistage pump, etc.
The product range covers 15 series with over 2,000 specifications, which are well sold in more than 120 countries and regions. The base has established steady cooperative relationships with world-class pump manufacturers, importers, dealers and hypermarkets.

Pump Manufacturing Base for General Industrial Pumps (Xiangtan City, Hunan Province)

Established in 2010, LEO Group Pump (Hunan) Co., Ltd. is a wholly-owned subsidiary by LEO Group Co LId Located in Juhua Economic Development Zone Su Xiantan City Hun Province Covers an $8500 \mathrm{~m}^{2}$ and constuction of Xianglan City, Hunan Province. Covers an area of 85,000 n and construction area is about $92,635 \mathrm{~m}^{2}$ with total investment of approximately 74 million dollars It is the most important R\&D, manufacturing and testing center of LEO Group. The leading products include large mixed flow and axial flow pump (vertical, horizontal, oblique, tubular, submersible etc.), double-suction centrifugal pump, multistage centrifiugal pump, slurry pump, desulphurization pump and submersible centrifugal pump. Products are mainly used in mine, metallurgy, coal washing, FGD, municipal water etc.

Pump Manufacturing Base for Water Conservancy \& Water Resources (Wuxi City, Jiangsu Province)

Formerly known as Wuxi Xi Pump Manufacturing Co., Ltd., a well-known manufacturer of water conservancy is speciaized in large and medium-sized pums prodution for conservanoy priect and series with nearly 1000 specifications. Products exported to more than 20 countries in Asia, Latin-America, Europe and Oceania
As a main supplier, the base provides large pumps for South-to-North Water Diversion Project-a national key project. There are over 140 technicists, including 1 professor level senior engineer, 16 senior engineers, and 39 engineers.

Pump Manufacturing Base for Petrochemical Industry (Daiian City, Liaoning Province)

It is the pump manufacturing base for petrochemical industry, combined with Dalian LEO Huaneng Pump Co., Ltd and LEO (Dalian) Industrial Pump Technology Center Co., Ltd
Formerly known as Dalian Huaneng Corrosion-Resistant Pump Works, the base is specialized in production of petrochemical pumps for crude oil transportation, crude oil refinery, heavy chemical industry, coal chemical industry and fine chemistry, etc. The base focuses on design and manufacture of 30 series ($\mathrm{OH}, \mathrm{BB}, \mathrm{VS}$, etc.) of petrochemical pumps with over 3000 specifications, which are in accordance with API and ISO standard
LEO (Dalian) Industrial Pump Technology Center Co., Ltd. is one of the research branch of national level technology center for petrochemical pumps, specializes in R\&D, design of pumps of petro chemistry, coal chemical industry, long-distance transport pipes, energy resources, fine chemicals industry, etc. Design and develop software and large laboratories, explore liquid transport schemes under severe conditions and solve the difficult projects of ultralow temperature, high temperature, high pressure, low cavitation, highly corrosive, energy recovery, etc.

LVS/LVR

Ambient Temperature

Max. ambient temperature: $+40^{\circ}$. Ambient temperature above $40^{\circ} \mathrm{C}$ or installation at altitude of more than 1000 meters above sea level require the use of an oversize motor. Because low air density and poor cooling effects, the motor output power P_{2} will be decreased. See the picture
such cases, it may be necessary to use a motor with a higher output power rating

For example, when the pump is installed at altitude of more han 3500 meters above sea level, P_{2} will be decreased to 88%. When the ambient temperature is $70^{\circ} \mathrm{C}, \mathrm{P}_{2}$ will be decreased to 78%.

Application

Suitable for transferring liquids of low viscosity, non inflammable and n
particles or fibers
Water supply \&
Water supply \& drainage for high-rise buildings,
filtration and transfer at waterworks, pressure boosting in main pipe
Washing and cleaning systems, boiler feeding, cooling water circulation, water treatment systems, auxiliary
system, support equipment
Uitra-ilitration systems, reverse-osmosis systems, distillation

- Agricultural irrigation: sprinkler irrigation, drip-feed irrigation - Food \& beverage industry
- Fire-fighting system

Operating Conditions

- Low viscosity, non-inflammable and non-explosive liquids not containing solid particles or fibers. The liquids must not chemically attack the pump materials. When pumping liquids
with a density or viscosity is higher than that of water, a motor with a higher output power rating shall be used.
- Liquid temperature: $-20^{\circ} \mathrm{C} \sim+120^{\circ} \mathrm{C}$
- Flow ranges: $0.7-240 \mathrm{~m}^{3} /$
- Max. ambient temperature: $+40^{\circ}$
- Max. operation pressure: 33 bar - Altitude: up to 1000 m

Motor

- IE 2 motor (IE 3 motor optional)
- Totally enclosed \& fan-cooled
- Protection class: IP55
- Standard voltage: $50 \mathrm{~Hz} \quad 1 \times 220 \mathrm{~V} / 3 \times 380 \mathrm{~V}$

Identification Codes

LVs: Stainless steel wetted parts
LVR: Cast iron base \& pump cover
Identifications codes of flange structure
G: Threaded connector

Minimum Inlet Pressure-Npsh Calculation of the inlet pressure " H " is recommended in these situations:
The liquid temperature is high
The flow is significantly higher than the rated flow.
atis drawn from depth
met conditions are ph long pipes.
nlet conditions are poor

To avoid cavitation, make sure that there is a minimum pressure on "the suction side of the pump. The maximum
suction lift "H" in meters head can be calculated as follows
H $\quad=\mathrm{Pb}_{\mathrm{b}} \times 10.2-\mathrm{NPSH}-\mathrm{H}-\mathrm{Hv}-\mathrm{Hs}_{s}$
$\mathrm{Pb} \quad=$ Barometric pressure in bar. (Barometric pressure can be set to 1 bar). In closed systems, Pb indicate the system pressure in bar

NPSH $=$ Net Positive Suction Head in meters head. (To be read from the NPSH curve at the highest flow the pump will be delivering.)
$\mathrm{Hf}_{\mathrm{m}} \quad=$ Friction loss in suction pipe in meters head (At the highest flow the pump will be delivering.)
Hv = Vapor pressure in meters head. (To be read from the vapor pressure scale. "Hv" depends on the liquid temperature "tm")

Hs $=$ Safety margin=minimum 0.5 meters head.

If the " H " calculated is positive, the pump can operate at suction lift of maximum "H" meters head.
If the "H" calculated is negative, an inlet pressure of minimum " H " meters head is required.

Note: To avoid cavitation, never select a pump with a duty point too far to the right on the NPSH curve. Aways check the NPSH value of the ump at the highest possible flow.

Maximum Inlet Pressure
The following table shows the maximum permissible inlet pressure. However, the current inlet pressure + the pressure against a closed valve must always be lower than the Max permissible operating pressure
the bearing in the motor operating pressure is exceeded may be damaged and the life of the shaft seal reduced

Model	Max. Inlet Pressure [bar]
LVR(S) 1-2 - 1-36	10
LVR(S) 2-2	6
LVR(S) 2-3 - 2-12	10
LVR(S) 2-13-2-26	15
LVR(S) 3-2 - 3-29	10
LVR(S) 3-31-3-36	15
LVR(S) 4-2	6
LVR(S) 4-3 - 4-11	10
LVR(S) 4-12-4-22	15
LVR(S) 5-2 - 5-16	10
LVR(S) 5-18-5-29	15
LVR(S) 10-1-10-6	8
LVR(S) 10-7-10-22	10
LVR(S) 15-1 - 15-3	8
LVR(S) 15-4-15-17	10
LVR(S) 20-1-20-3	8
LVR(S) 20-4-20-17	10
LVR(S) 32-1-1-32-4	4
LVR(S) 32-5-2 - 32-10	10
LVR(S) 32-11-32-14	15
LVR(S) 45-1-1 - 45-2	4
LVR(S) 45-3-2 - 45-5	10
LVR(S) 45-6-2 - 45-13-2	15
LVR(S) $64-1-1$-64-2-2	
LVR(S) 64-2-1 - 64-4-2	10
LVR(S) 64-4-1 - 64-8-1	15
LVR(S) 90-1-1-90-1	4
LVR(S) 90-2-2 - 90-3-2	10
LVR(S) 90-3-90-6	15
LVR(S) 120-1-120-2-1	10
LVR(S) 120-2 - 120-5-1	15
LVR(S) 120-5-120-7	20
LVR(S) 150-1-1 - 150-2-2	10
LVR(S) 150-2-1 - 150-4-1	15
LVR(S) 150-4 - 150-6	20
LVR(S) 200-1-D	10
LVR(S) 200-1-C - 200-2-2C	15

Model			LVS Max. Operation pressure barl
	Oval Fange	DiN Fange	
LVR(S) 1	16	25	25
LVR(S) 2	16	25	25
LVR(S) 3	16	25	25
LVR(S) 4	16	25	25
LVR(S) 5	16	25	25
LVR(S) 10	25		25
LVR(S) 15	25		25
LVR(S) 20	25		25
LVR(S) 32-1-1 - 32-7	16		16
LVR(S) 32-8-2-32-14	30		30
LVR(S) 45-1-1-45-5	16		16
LVR(S) 45-6-2 - 45-11	30		30
LVR(S) 45-12-2 - 45-13-2	3		33
LVR(S) 64-1-1-64-5	16		16
LVR(S) 64-6-2 - 64-8-1	30		30
LVR(S) 90-1-1-90-4	16		16
LVR(S) 90-5-2 - 90-6	30		30
LVR(S) 120-1 - 120-7	20		20
LVR(S) 150-1-1 - 150-6	20		20
LVR(S) 200-1-D - 200-4	2		20

LVS/LVR

How to Read The Curve Charts
The thin curves indicate the duty
range where long-time operation
is not allowed

Minimum Flow Rate
Due to the risk of overheating, the pump should not be used at a flow below the minimum flow rate. The curve below shows the minimum flow rate as a percentage of the nomina now rate in relation to the liquid temperature.
Air cooling apparatus

Note: The outlet valve must be opened when the pump is in operation.

Terminal Box Positions
Note: set to position 1 before delivery)

| MODEL DESCRIPTION | LVR(I) ${ }^{\text {a }}$ | LVR(IS)2 | LVR(\|S|3 | LVRI(S)4 | LVR(S)5 | LVR(I) 10 | LVR(IS)15 | LVR(S120 | LVR(S)\|32 | LVRIS445 | LVR (S) 64 | LVRISIso | LVR(S\|120 | LVAIST) 50 | LVRIS2200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rated flow [$\left.\mathrm{m}^{3} / \mathrm{h}\right]$ | 1 | 2 | 3 | 4 | 5 | 10 | 15 | 20 | 32 | 45 | 64 | 90 | 120 | 150 | 200 |
| Flow range [$\left.\mathrm{m}^{3} / \mathrm{h}\right]$ | 0.7-2.4 | 1.0-3.5 | 1.2-4.5 | 1.5-8 | 2.5-8.5 | 5-13 | 8-23 | 10.5-29 | 15-40 | ${ }^{22-58}$ | 30-85 | 45-120 | 60-150 | 80-180 | 100-240 |
| Max. pressure [bar] | 22 | 23 | 24 | 21 | 24 | 22 | 23 | 25 | 28 | 33 | 22 | 20 | 16 | 16 | 16 |
| Motor power [kW] | 0.37-2.2 | 0.37-3 | 0.37-3 | 0.37-4 | 0.37-4 | 1.17-7 5 | 1.1-15 | 1.1-18.5 | 1.5-30 | 3-45 | 4-45 | 5.5-45 | 11-75 | 11-75 | 18.5-110 |
| Temperature Range [${ }^{\circ} \mathrm{C}$] | $-20^{\circ} \mathrm{C} \sim+120^{\circ} \mathrm{C}$ (Note: Both the Max. permissible pressure and liquid temperature range refer to the pump capacity.) | | | | | | | | | | | | | | |
| Max. pumpe efficiency [\%] | 45 | 46 | 55 | 59 | 60 | 65 | 70 | 72 | 78 | 79 | 80 | 81 | 74 | 73 | 79 |
| Pipe connection-LVR | | | | | | | | | | | | | | | |
| Oval flange | G1 | G1 | G1 | G1 $1 / 4$ | G1 $1 / 4$ | - | - | - | - | - | - | - | - | - | - |
| DIN flange | DN25 | DN25 | DN25 | DN32 | DN32 | DN40 | DN50 | DN50 | DN65 | DN80 | DN100 | DN100 | DN125 | DN125 | DN150 |
| Pipe connection-LVs | | | | | | | | | | | | | | | |
| Oval flange | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
| DIN flange | DN32 | DN32 | DN32 | DN32 | DN32 | DN40 | DN50 | DN50 | DN65 | DN80 | DN100 | DN100 | DN125 | DN125 | DN150 |
| Clamp connector | \$42 | \$42 | \$42 | \$42 | \$42 | - | - | - | - | - | - | - | - | - | - |
| Threaded connector | $\mathrm{R}_{2} 1^{1 / 4}$ | R2 $\mathrm{I}^{11 / 4}$ | $\mathrm{R}_{2} 1^{1 / 4}$ | R2 $1^{11 / 4}$ | R2 $1^{11 / 4}$ | - | - | - | - | - | - | - | - | - | - |

Scope of Performance-LVR,LVS

LVS/LVR

Cross Section

	:LVR10 (15,20	
	Part	Material
1	Base	HT200
2	Drainges plug assembly	Alisiou
3	Primary difuser	
4	Diffuser with bearing	AIISI304
5	Medium difiuser	A11304
6	Impeler	A11304
7	Final volute	Alis304
8	Filling plug	Alisio4
9	Motor base	HT200
10	Coupling	Hoon based powder meatulugy
11	Motor	
$\frac{12}{13}$	Guarding plate	AISI304
-13	Centrige pug sassembly	
15	Pump shatt	${ }^{\text {AlS1316 }}$
16	Pump barrel	Als1304

modeL: LVs ($2,3,4,5$)

modeL: LVr332 (45,64,90)

	Part	Material
1	Base plate	HT200
2	Flange	2635
3	Primary diftuser	Al13304
4	Medium difiuser	Al131304
5	Difituer with bearing	${ }_{\text {Alsisi }}$
6	Impeler	Al131304
	Shatt sleve assembly	
8	Final difuser	Al131304
${ }_{10}^{9}$	Vent plug assembly Motor base	
11	Motor	
12	Guarding plate	Al1304
13	Coupling	QT400
14	${ }_{\text {Corlide }}^{\text {Catide seal }}$	HT200
16	Filling plug	${ }^{\text {Als }} 1304$
17	Tension plate	Al131304
18	Pump barel	Al15304
19	Pump shat	Al131304

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

MODEL	\|POWER[kW]	O[m³/h]	0.7	0.8	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4
LVR(S)1-2	0.37	$H(m)$	12	12	12	12	11	11	10	10	9	8
LVR(S) 1 -3	0.37		18	18	18	17	17	16	15	14	13	10.5
LVR(S) 1-4	0.37		24	24	24	22	22	21	19	18	15	14
LVR(S) 1 -5	0.37		30	30	29.5	28	27	26	24	22	19	16
LVR(S) 1 -6	0.37		36	35	35	34	32	30	28	25	22	19
LVR(S) 1 -7	0.37		42	41	40.5	39	37	35	32	30	26	22
LVR(S)1-8	0.55		48	47	46.5	45	43	40	38	34	30	26
LVR(S) 1 -9	0.55		54	53	52	50	48	45	42	37	33	28
LVR(S) $1-10$	0.55		59	58	57.5	55	53	50	46	41	35	30
LVR(S) 1 -11	0.55		65	64	63	61	58	54	51	45	39	33
LVR(S) $1-12$	0.75		72	71	70	67	64	61	56	50	44	37
LVR(S) $1-13$	0.75		78	77	75	73	69	65	60	54	48	39.5
LVR(S) $1-15$	0.75		90	88	86	83	79	74	68	61	54	45
LVR(S) $1-17$	1.1		102	101	98	95	91	85	78	70	62	52
LVR(S) $1-19$	1.1		114	112	110	106	101	94	87	78	68	57
LVR(S) 1-21	1.1		125	123	120	116	110	103	95	85	74	61
LVR(S) 1-23	1.1		136	134	130	126	120	112	103	92	80	65
LVR(S) 1-25	1.5		152	150	145	142	136	128	119	106	93	78
LVR(S) 1-27	1.5		164	162	157	153	146	137	128	114	100	84
LVR(S) 1-30	1.5		181	178	173	169	162	152	140	126	110	92
LVR(S) 1 -33	2.2		202	199	194	189	181	170	158	142	124	106

LVS/LVR

Hydraulic Performance Curves

MODEL	OVAL FLANGE (LVR)		DIN FLANGE (LVR, LVS)		D1	D2	N.W.
	B1	B1+B2\|	B1	B1+B2			
2-2	256	470	282	496	130	105	22.3
2-3	256	470	282	496	130	105	22.5
2-4	274	488	300	514	130	105	22.3
2-5	292	506	318	532	130	105	22.8
2-6	314	582	340	608	149.6	124.5	26.6
2-7	332	600	358	626	149.6	124.5	27.1
2-8	350	618	376	644	150	124.5	29.1
2-9	368	636	394	662	150	124.5	29.5
2-10	386	654	412	680	150	124.5	30
2-11	404	672	430	698	150	124.5	30.4
2-12	438	756	464	782	163.6	127	35.9
2-13	456	774	482	800	163.6	127	36.2
2-14	474	792	500	818	163.6	127	37.8
2-15	492	810	518	836	164	127	38.1
2-16	510	828	536	854	164	127	40.9
2-17	528	846	554	872	164	127	40.9
2-18	546	864	572	890	164	127	41
2-19	564	882	590	908	164	127	42.2
2-20	582	900	608	926	164	127	42.7
2-21	600	918	626	944	164	127	43.1
2-22	618	936	644	962	164	127	46.6
2-23	640	980	666	1006	185.5	120	50.4
2-24	658	998	684	1024	185.5	120	50.8
2-25	676	1016	702	1042	185.5	120	51.2
2-26	694	1034	720	1060	185.5	120	51.6

DIN FLANGE(LVR)
:

CLAMP CONNECTOR(LVS)
THREADED CONNECTOR(LVS)

MODEL	POWER[kW]	$0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$	1.0	1.2	1.6	2.0	2.5	2.8	3.2	3.5
LVR(S)2-2	0.37	$\mathrm{H}(\mathrm{m})$	18	17	16	15.5	13.5	12	10	8
LVR(S)2-3	0.37		27	26	24	22.5	19.5	18	15	12
LVR(S)2-4	0.55		36	35	33	30.5	27	24	17	16
LVR(S)2-5	0.55		45	43	40	37	32.5	30	24	20
LVR(S)2-6	0.75		53	52	50	45.5	40	36	30	24
LVR(S)2-7	0.75		63	61	57	52	45.5	41	35	28
LVR(S)2-8	1.1		71	69	65	59	51	47	40	33
LVR(S)2-9	1.1		80	78	73	68.5	60	54	45	37
LVR(S)2-10	1.1		89	86	81	74	65	59	49	40
LVR(S)2-11	1.1		98	95	89	82	71.5	64	54	44
LVR(S)2-12	1.5		107	103	97	90	78	71	59	47
LVR(S)2-13	1.5		116	114	106	98	86.5	78	65	52
LVR(S)2-14	1.5		125	122	114	105	92	84	69	57
LVR(S)2-15	1.5		134	130	123	112	98	90	73	60
LVR(S)2-16	2.2		143	139	131	120	104	96	79	66
LVR(S)2-17	2.2		152	148	139	128	111	102	85	70
LVR(S)2-18	2.2		161	157	148	136	122	108	91	76
LVR(S)2-19	2.2		170	165	156	143	128	113	95	81
LVR(S)2-20	2.2		179	174	164	150	134	119	100	85
LVR(S)2-21	2.2		188	183	172	157	140	124	105	88
LVR(S)2-22	2.2		197	192	180	165	145	130	110	90
LVR(S)2-23	3.0		205	201	188	173	153	137	105	97
LVR(S)2-24	3.0		214	210	197	181	160	144	120	105
LVR(S)2-25	3.0		223	219	205	189	168	151	125	107
LVR(S)2-26	3.0		232	228	214	198	176	158	130	110

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

MODEL	OVAL FLANGE (LVR)		$\begin{aligned} & \text { DIN FLANGE } \\ & \text { (LVR, LVS) } \end{aligned}$		D1	D2	$\begin{gathered} \text { N.W. } \\ \text { kgss } \end{gathered}$
	B1	B1+B2	B1	B1+B2			
3-2	256	470	282	496	130	105	21
3-3	256	470	282	496	130	105	21.4
3-4	274	488	300	514	130	105	21.8
3-5	292	506	318	532	130	105	22.8
3-6	310	524	336	550	130	105	23.3
3-7	328	542	354	568	130	105	23.7
3-8	350	618	376	644	150	124	25.5
3-9	368	636	394	662	150	124	26.6
3-10	386	654	412	680	150	124	27.2
3-11	404	672	430	698	150	124	28.8
3-12	422	690	448	716	150	124	29.7
3-13	440	708	466	734	150	124	30.1
3-15	476	744	502	770	150	124	32.1
3-17	528	846	554	872	164	127	39.2
3-19	564	882	590	908	164	127	40.2
3-21	600	918	626	944	164	127	42.2
3-23	636	954	662	980	164	127	42.4
3-25	672	990	698	1016	164	127	44.4
3-27	708	1026	734	1052	164	127	44.5
3-29	744	1062	770	1088	164	127	45.3
3-31	784	1124	810	1150	186	120	52.3
3-33	820	1160	846	1186	186	120	53.1
3-36	874	1214	900	1240	186	120	54.7

DIN FLANGE(LVR)
$:-\frac{18}{180}$

CLAMP CONNECTOR(LVS)
THREADED CONNECTOR(LVS

MODEL	POWER[LW]	$0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$	1.2	1.6	2.0	2.4	2.8	3	3.6	4.0	4.5
LVR(S) ${ }^{\text {-2 }}$	0.37	$\mathrm{H}(\mathrm{m})$	13	12	12	11	11	10	8	7.5	4
LVR(S)3-3	0.37		19	19	18	17	16	15	14	12	8
LVR(S)3-4	0.37		25	24	23	22	20	19	17	14	9
LVR(S)3-5	0.37		31	31	29	27	25	24	20	17	11
LVR(S)3-6	0.55		37	36	35	33	30	28	24	21	14
LVR(S)3-7	0.55		43	40	40	37	35	32	28	24	16
LVR(S)3-8	0.75		51	48	47	44	41	38	33	28	19
LVR(S)3-9	0.75		56	54	51	48	45	42	36	30	21
LVR(S)3-10	0.75		62	60	57	54	50	46	40	33	23
LVR(S)3-11	1.1		69	66	63	60	56	51	44	38	26
LVR(S)3-12	1.1		75	72	69	65	61	56	48	41	28
LVR(S)3-13	1.1		80	78	74	70	65	60	51	44	30
LVR(S)3-15	1.1		92	89	85	80	73	68	58	49	34
LVR(S)3-17	1.5		107	104	100	94	87	78	70	59	42
LVR(S)3-19	1.5		119	116	111	104	97	87	77	65	47
LVR(S)3-21	2.2		133	129	124	117	109	97	88	75	54
LVR(S)3-23	2.2		146	141	135	128	119	105	95	81	59
LVR(S)3-25	2.2		158	153	146	138	128	115	102	87	64
LVR(S)3-27	2.2		170	164	157	148	138	124	110	93	67
LVR(S)3-29	2.2		182	176	168	159	147	133	118	100	72
LVR(S)3-31	3.0		197	191	183	173	161	142	128	110	80
LVR(S)3-33	3.0		210	203	194	194	170	152	137	116	84
LVR(S) 3 -36	3.0		228	221	211	200	185	165	149	126	91

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

DIN FLANGE(LVR)
10

CLAMP CONNECTOR(LVS)
THREADED CONNECTOR(LVS)

MODEL	POWER[\|WW]	O[m²/h]	1.5	2.0	3.0	4.0	5.0	6.0	7.0	8.0
LVR(S)4-2	0.37	$\mathrm{H}(\mathrm{m})$	19	18	17	14.5	13	10.5	8	6
LVR(S)4-3	0.55		28	27	26	23.5	20	18	14	10
LVR(S)4-4	0.75		38	36	34	31.5	27	24.5	18	13
LVR(S)4-5	1.1		47	45	43	40.5	34	31.5	23	17
LVR(S)4-6	1.1		56	54	52	47.5	41	36	28	20
LVR(S)4-7	1.5		66	63	61	57	48	44.5	34	24
LVR(S)4-8	1.5		74	72	70	64	55	49.5	38	27
LVR(S)4-9	2.2		86	81	78	72	63	56	44	32
LVR(S)4-10	2.2		96	90	87	81	71	64	50	34
LVR(S)4-11	2.2		105	99	95	88	78	69	53	39
LVR(S)4-12	2.2		114	108	104	96	85	75	57	41
LVR(S)4-13	3.0		123	117	113	103	93	83	63	45
LVR(S)4-14	3.0		136	126	122	114	101	90	69	48
LVR(S)4-15	3.0		142	135	131	120	108	96	73	52
LVR(S)4-16	3.0		152	144	140	129	115	102	78	55
LVR(S)4-17	4.0		163	153	149	137	122	108	83	62
LVR(S)4-18	4.0		175	162	158	145	129	115	89	65
LVR(S)4-19	4.0		183	171	168	155	137	123	95	67
LVR(S)4-20	4.0		192	180	176	161	144	128	99	72
LVR(S)4-21	4.0		203	200	184	169	152	134	103	75
LVR(S)4-22	4.0		211	210	192	177	160	139	108	79

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

VAL FLANGE(LVR)PN
LVR5-2~LVR5-22

MODEL	POWER[kw]	$0\left[\mathrm{~m}^{3} / \mathrm{h]}\right.$	2.5	3.0	4.0	5.0	6.0	7.0	8.0	8.5
LVR(S)5-2	0.37	$\mathrm{H}(\mathrm{m})$	12	12	10	9	7	6	4	3.5
LVR(S)5-3	0.55		19	18	16	15	12	10	8	6
LVR(S)5-4	0.55		24	24	22	19	16	14	10.5	9
LVR(S)5-5	0.75		31	30	28	24	22	18	15	12
LVR(S)5-6	1.1		38	37	34	28	27	23	19	15
LVR(S)5-7	1.1		44	42	40	32	32	27	22	19
LVR(S) 5 -8	1.1		50	48	45	40	36	31	25	21
LVR(S)5-9	1.5		59	56	53	47	44	37	31	26
LVR(S)5-10	1.5		65	62	59	53	48	41	34	29
LVR(S)5-11	2.2		73	70	66	59	54	47	38	35
LVR(S)5-12	2.2		78	76	72	63	59	51	42	38
LVR(S)5-13	2.2		85	82	78	68	64	55	45	40
LVR(S)5-14	2.2		91	89	83	74	69	60	58	53
LVR(S)5-15	2.2		98	95	89	79	74	63	52	46
LVR(S)5-16	2.2		103	101	95	85	78	68	55	49
LVR(S)5-18	3		118	115	109	98	90	78	65	58
LVR(S)5-20	3		130	127	120	108	100	87	72	64
LVR(S)5-22	4		145	142	134	120	112	97	80	72
LVR(S)5-24	4		158	154	146	132	122	106	88	78
LVR(S)5-26	4		170	166	157	145	132	115	95	85
LVR(S)5-29	4		192	188	178	155	149	131	109	98

LVS/LVR

Hydraulic Performance Curves
Dimension Drawing

MODEL	POWER[\|WW]	O[m/h]	5.0	6.0	8.0	10	12	13
LVR(S) $10-2$	0.75	$\mathrm{H}(\mathrm{m})$	20	19	18	15	12	10
LVR(S) $10-3$	1.1		30	29	26	23	18	16
LVR(S)10-4	1.5		40	40	36	32	26	23
LVR(S)10-5	2.2		51	50	46	40	33	29
LVR(S) $10-6$	2.2		61	59	55	48	39	35
LVR(S) $10-7$	3		72	70	65	56	46	41
LVR(S) $10-8$	3		82	80	74	64	53	46
LVR(S)10-9	3		92	89	82	70	59	52
LVR(S)10-10	4		102	100	93	80	66	59
LVR(S)10-12	4		122	119	110	95	79	69
LVR(S)10-14	5.5		142	140	130	113	94	82
LVR(S)10-16	5.5		162	159	148	128	106	93
LVR(S)10-18	7.5		185	182	169	147	123	109
LVR(S)10-20	7.5		206	201	188	164	136	119
LVR(S)10-22	7.5		226	221	206	178	147	130

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

LVR

MODEL	DIN FLANGE(LVR)		$\begin{gathered} \text { DIN FLANGE } \\ \text { (LVS) } \end{gathered}$		D1	D2	$\begin{aligned} & \text { N.W. } \\ & \text { (kgs) } \end{aligned}$
	B1	B1+B2	B1	B1+B2			
15-1	354	622	352	620	150	125	44.9
15-2	415	733	413	731	164	127	52.5
15-3	465	805	463	803	186	120	60.9
15-4	510	850	508	848	186	120	64.1
15-5	555	895	553	893	186	120	65.2
15-6	632	1029	630	1027	210	142	75.1
15-7	677	1074	675	1072	210	142	76.1
15-8	722	1119	720	1117	210	142	83.6
15-9	767	1164	765	1162	210	142	83.8
15-10	889	1388	887	1386	254	175	133.2
15-12	979	1478	977	1476	254	175	134.7
15-14	1069	1568	1067	1566	254	175	137.2
15-17	1204	1703	1202	1701	254	175	155.9

PN 16-25/DN 50

(DIN-ANSI-JIS)
PN $16-25 / \mathrm{DN} 50$

LVS

MODEL	POWER[LW]	$0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$	8.5	12	15	18	21	23.5
LVR(S) $15-1$	1.1	H(m)	13	12	11	10	9	7
LVR(S) 15-2	2.2		26	25	23	21	18	15
LVR(S)15-3	3		40	38	35	32	28	22
LVR(S) 15-4	4		55	51	47	43	38	32
LVR(S)15-5	4		68	64	58	53	48	38
LVR(S) $15-6$	5.5		81	77	71	64	58	47
LVR(S)15-7	5.5		95	89	83	75	65	52
LVR(S) $15-8$	7.5		108	103	96	86	75	62
LVR(S) $15-9$	7.5		121	115	108	97	84	70
LVR(S) $15-10$	11		136	129	120	109	95	80
LVR(S) 15 -12	11		164	155	142	130	114	95
LVR(S)15-14	11		189	180	166	151	130	110
LVR(S) 15 -17	15		231	219	205	185	160	135

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

LVS

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

MODEL	DIN FLANGE(LVR, LVS)		D1	D2	$\begin{gathered} \text { N.W.W. } \\ \text { (kgs) } \end{gathered}$
	B1	B1+B2			
32-1-1	455	773	164	127	61.7
32-1	455	773	164	127	63.7
32-2-2	525	865	186	120	72.6
32-2	525	865	186	120	74.9
32-3-2	645	1042	210	142	100.9
32-3	645	1042	210	142	100.6
32-4-2	715	1112	210	142	108.7
32-4	715	1112	210	142	108.7
32-5-2	895	1394	254	175	149.2
32-5	895	1394	254	175	149.2
32-6-2	965	1464	254	175	152.1
32-6	965	1464	254	175	152.1
32-7-2	1035	1534	254	175	${ }^{167.6}$
32-7	1035	1534	254	175	167.6
32-8-2	1105	1604	254	175	170.7
32-8	1105	1604	254	175	170.7
32-9-2	1175	1735	330	250	221.6
32-9	1175	1735	330	250	221.6
32-10-2	1245	1805	330	250	224.5
32-10	1245	1805	330	250	224.5
32-11-2	1315	1915	380	280	263.3
32-11	1315	1915	380	280	263.4
32-12-2	1385	1985	380	280	266.2
32-12	1385	1985	380	280	266.2
32-13-2	1455	2135	420	305	323.6
32-13	1455	2135	420	305	323.6
32-14-2	1525	2205	420	305	326.5
32-14	1525	2205	420	305	326.5

LVR
LVS

MODEL	POWER[\|WW]	$\mathrm{a}\left[\mathrm{m}^{3} / \mathrm{h}\right]$	15	20	25	32	35	40
LVR(S)32-1-1	1.5	$\mathrm{H}(\mathrm{m})$	15	14	13	10	8	5
LVR(S) $32-1$	2.2		18	17	16	13	${ }_{1175}$	9
LVR(S) $32-2-2$	3		31	29.5	26.5	20.5	17.5	12
LVR(S) 32-2	4		37	35.5	32.5	27.5	25	19.5
LVR(S)32-3-2	5.5		50	47	43.5	35.5	31	22.5
LVR(S)32-3	5.5		55.5	53	49	41.5	37.5	29.5
LVR(S) 32-4-2	7.5		68.5	65	60	49.5	44	32.5
LVR(S)32-4	7.5		74.5	70.5	${ }^{66}$	56	50.5	40
${ }^{\text {LVAR (S)32-5-2 }}$	11		88.5 945	84.5 90	88	65.5	$\begin{array}{r}58.5 \\ \hline 65\end{array}$	45
LVR(S)32-6-2	11		107	102	94.5	79.5	71	55
LVR(S)32-6	11		113	108	100	85.5	77.5	61.5
LVR(S)32-7-2	15		127	121	112	94.5	85	66.5
LVR(S)32-7	15		133	126	118	101	92	73.5
LVR(S) 3 3-8-2	15		145	138	128	108	98	76.5
LVR(S) 32-8	15		151	144 158	134 147	115	104	83
LVR(S)32-9-2	18.5 18.5		165 171	158 163	147 152	124 131	112 119	88.5 95.5
LVR(S) ${ }^{\text {a }}$ 2-10-2	18.5		184	175	163	138	125	98.5
LVR(S)32-10	18.5		190	181	169	145	133	106
LVR(S) ${ }^{\text {2 }}$ 2-11-2	22		203	194	181	154	140	111
LVR(S) $32-11$	22		209	200	187	161	147	118
LVRR(S)32-12-2	22		222	212	197	168	152	121
LVR(S) $32-12$	22		227	217	203	176	160	128
LVR(S) ${ }^{\text {2 }}$ 2-13-2	30		244	233	218	187	169	136
LVR(S)32-13	30		250	239	224	193	177	145
LVR(S)32-14-2	30 30		${ }_{263} 26$	251 258	${ }_{2}^{234}$	201	188	146 146

LVS/LVR

Hydraulic Performance Curves

LVR

LVS

MODEL	POWER[\|WW]	O[mh ${ }^{\text {a }}$	25	30	35	40	45	50	55	58
LVR(S)45-1-1	3	$\mathrm{H}(\mathrm{m})$	20	19.5	18	17	15	12.5	10.5	8
LVR(S)45-1	4		24	23	22	20.5	19	17.5	15	13
LVR(S)45-2-2	5.5		41	39	37	34	30.5	26.5	22	18
LVR(S)45-2	7.5		48.5	46.5	44.5	42	39	35	31	28
LVR(S)45-3-2	11		66	64	61	56.5	52	46	40	35
LVR(S)45-3	11		73.5	71	68	64	59.5	54	47.5	43
LVR(S)45-4-2	15		91	88	84	78.5	72	64.5	56	50
LVR(S)45-4	15		98.5	95	91	85.5	79.5	72.5	64	59
LVR(S)45-5-2	18.5		116	113	107	101	92.5	83.5	73	66
LVR(S)45-5	18.5		124	120	115	108	100	91.5	81	74
LVR(S)45-6-2	22		142	137	131	122	113	103	90	82
LVR(S) $45-6$	22		149	144	138	130	121	111	98	90
LVR(S)45-7-2	30		168	163	156	147	135	123	109	99
LVR(S)45-7	30		176	171	163	156	144	132	116	108
LVR(S)45-8-2	30		193	187	179	168	155	142	126	115
LVR(S)45-8	30		200	194	187	176	164	149	134	122
LVR(S)45-9-2	30		217	211	202	189	175	159	142	130
LVR(S)45-9	37		226	219	210	199	185	170	151	140
LVR(S)45-10-2	37		243	236	225	212	196	179	159	146
LVR(S)45-10	37		251	243	233	220	205	187	166	154
LVR(S)45-11-2	45		273	264	253	238	222	201	179	164
LVR(S)45-11	45		281	272	261	246	230	209	187	172
LVR(S)45-12-2	45		298	289	276	261	242	220	195	179
LVR(S)45-12	45		306	296	284	268	251	229	204	188
LVR(S)45-13-2			323	313	300	283	263	239	212	195

LVS/LVR

Hydraulic Performance Curves

MODEL	POWER[LW]	O[m³]	30	40	50	64	70	80	85
LVR(S)64-1-1	4	$\mathrm{H}(\mathrm{m})$	20	19	17.5	14	12	8.5	6
LVR(S)64-1	5.5		27	25.5	23.5	21	20	17	15
LVR(S)64-2-2	7.5		40	38	35.5	29	25.5	19	15
LVR(S)64-2-1	11		48	45.5	42.5	37	34.5	29	25
LVR(S)64-2	11		55	52.5	49.5	44	41.5	36	33
LVR(S)64-3-2	15		68	65.5	60	52.5	48.5	40	35
LVR(S)64-3-1	15		75.5	72	67.5	59.5	55.5	47	42
LVR(S)64-3	18.5		83.5	80	76	68	64	56	51
LVR(S)64-4-2	18.5		96	92.5	87	75.5	70	59	52
LVR(S)64-4-1	22		104	100	94.5	83.5	78.5	67.5	61
LVR(S)64-4	22		112	107	102	91	85.5	74.5	69
LVR(S)64-5-2	30		126	122	115	101	94	80.5	73
LVR(S)64-5-1	30		134	129	122	109	102	88	81
LVR(S)64-5	30		141	136	129	116	109	96	89
LVR(S) $64-6-2$	30		154	148	140	124	115	99	90
LVR(S)64-6-1	37		162	156	148	132	124	108	98
LVR(S)64-6	37		170	163	155	139	131	116	107
LVR(S)64-7-2	37		182	176	166	147	138	119	109
LVR(S)64-7-1	37		190	183	173	155	145	126	110
LVR(S)64-7	45		202	194	184	165	155	136	126
LVR(S)64-8-2	45		214	207	196	174	163	140	128
LVR(S)64-8-1	45		222	214	203	181	170	148	135

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

		MODEL	DIN FLANGE(LVR, LVS)		D1	D2	$\begin{aligned} & \text { N.W. } \\ & \text { (kgs) } \end{aligned}$	
		B1	B1+B2					
$ـ^{\text {D2 }}$			90-1-1	572.5	969.5	210	142	116
		90-1	572.5	969.5	210	142	121.2	
		90-2-2	774.5	1273.5	254	175	162.2	
		90-2	774.5	1273.5	254	175	174.9	
	d	90-3-2	866.5	1426.5	330	250	228	
		90-3	866.5	1466.5	380	280	264	
	$\because \square$	90-4-2	958.5	1638.5	420	305	326	
\%		90-4	958.5	1638.5	420	305	326	
	-	90-5-2	1051	1731	420	305	354	
		90-5	1051	1731	420	305	354	
	-	90-6-2	1143	1858	470	335	415	
	P- P	90-6	1143	1858	470	335	415	

MODEL	POWER[6W]	$0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$	40	50	60	70	80	90	100	110	120
LVR(S)90-1-1	5.5	$\mathrm{H}(\mathrm{m})$	22	21	20	18	16	14	10.5	6.5	-
LVR(S)90-1	7.5		38	26	25	23.5	22	20	17.5	14	10
LVR(S)90-2-2	11		45	43	41	38	34.5	30	24	17	8
LVR(S)90-2	15		58	55	52	49	46	42.5	37.5	31.5	25
LVR(S)90-3-2	18.5		74	71.5	68	63.5	58	51.5	44	35	24
LVR(S)90-3	22		88	84.5	80	75.5	70.5	65	58.5	50.5	40
LVR(S)90-4-2	30		106	102	97	91	84.5	76	65.5	54	40
LVR(S)90-4	30		120	114	109	103	96	88.5	79.5	69.5	57
LVR(S)90-5-2	37		136	131	125	118	109	98.5	86.5	72	55
LVR(S)90-5	37		150	144	136	129	121	111	101	87	72
LVR(S)90-6-2	45		166	161	154	145	135	123	108	91.5	72
LVR(S)90-6	45		182	175	166	156	146	135	123	108	90

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

MODEL	POWER[LW]	$0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$	60	70	80	90	100	110	120	130	140	150
LVR(S) $120-1$	11	$\mathrm{H}(\mathrm{m})$	22	21.8	21.6	21	20.5	19.5	18.5	17	16	15
LVR(S) $120-2-2$	15		34	33.6	33	31	30.2	30	28.5	27	25	24
LVR(S) $120-2-1$	18.5		41	40	39.5	38.5	37	36.5	34.5	32.5	30	27.5
LVR(S) $120-2$	22		46	45	44.5	43.5	42.4	41	40	38	36	33.5
LVR(S) $120-3-2$	30		57	56	55	53.5	52	51	49	46.5	43.5	41
LVR(S) $120-3-1$	30		64	63	62	60	58.5	57.5	55.5	52	49	46
LVR(S) $120-3$	30		69.5	68.5	67.5	66	64.4	62.5	61	57.5	54.5	51
LVR(S) 120-4-2	37		80.5	79	78	76	73.5	72	69	66	61.5	58
LVR(S) 120-4-1	37		87	86	84.5	82	80	78	76	72	68	64.5
$\operatorname{LVR}(\mathrm{S}) 120-4$	45		92.5	91	90	88	85.5	83	81	77	73	68.5
LVR(S) $120-5-2$	45		104.5	103	101	99	96	93	90	85.5	80.5	75.5
LVR(S) $120-5-1$	45		110.5	109	107.5	105	102	100	97	92	86.5	83
$\operatorname{LVR}(\mathrm{S}) 120-5$	55		115.5	114	113	110	107.5	104.5	101.5	96	91	86
LVR(S) 120-6-2	55		128	125.5	123	121	117.3	113.5	110	104.5	98.5	92.5
LVR(S) $120-6-1$	55		134	132	130.5	127	124	121	118	111	105	100
$\operatorname{LVR}(\mathrm{S}) 120-6$	75		139	137	135	132	128.8	126	123	116	110	104
LVR(S) $120-7-2$	75		151	148	145.5	143	138.6	134	130	123.5	116.5	109
LVR(S) $120-7-1$	75		156.5	154	152	148.5	144.5	141	137.5	130	123	116.5
LVR(S) $120-7$	75		162.5	160.5	158.5	155	151	148	145	137	129	123

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

MODEL	DIN FLANGE(LVR, LVS)		D1	D2	N.W. (kgs)
	840	1339		175	186
	840	1339	254	175	200
	1000	1560	330	250	250
	1000	1600	380	280	295
	1000	1680	420	305	317
	1160	1840	420	305	360
$150-3-1$	1160	1840	420	305	360
$150-3$	1160	1840	420	305	385
$150-4-2$	1320	2035	470	335	460
$150-4-1$	1320	2035	470	335	460
$150-4$	1350	2135	510	370	560
$150-5-2$	1510	2295	510	370	570
$150-5-1$	1510	2355	580	410	690
$150-5$	1510	2355	580	410	690
$150-6-2$	1670	2515	580	410	700
$150-6-1$	1670	2515	580	410	700
$150-6$	1670	2515	580	410	700

MODEL	POWER[kW]	O[mh $/ \mathrm{h}$	80	90	100	110	120	130	140	150	160	170	180
LVR(S)150-1-1	11	$H(m)$	18.3	17.8	17.3	17	16	15	14	12.5	11	10	8.5
LVR(S) $150-1$	15		24	23	22.5	22	21.5	20.5	20	18.5	17	16	15
LVR(S) $150-2-2$	18.5		37	35.5	34	33	32	31	29	27.5	26	23	21
LVR(S) $150-2-1$	22		44.3	43	42	40	39	38.5	37.5	35	33	30	27
LVR(S) $150-2$	30		50	49	48	47	45.5	44	42	40	37	34	32
LVR(S) $150-3-2$	30		63.5	61	59	57.5	56	54.5	53	49	45.5	42	39
LVR(S) $150-3-1$	37		70	68	67	65	63	62	60	56	53	49	45
$\operatorname{LVR}(\mathrm{S}) 150-3$	37		78	76.5	75	73	70.5	68	66	63	59	55	50.5
LVR(S) $150-4-2$	45		89	87	84	81.5	79	77	74.5	70.5	65.5	60	56
LVR(S) $150-4-1$	45		96.5	94	91.5	89	86.5	84	81.5	77	72.5	67	62
LVR(S) $150-4$	55		104	102	100	97	95	91	88	84	79.5	74	68
LVR(S) $150-5-2$	55		115.5	112	109	106	102.5	100	97	92	86	79	73.5
LVR(S) $150-5-1$	75		122.5	119.5	117	113.5	111.5	107.5	104.5	99	93.5	87	80
LVR(S) $150-5$	75		130	127.5	125	121	119	115	111.5	106.5	101	94.5	86.5
LVR(S) $150-6-2$	75		140	137	133	130	126	121	118	112	106	98	91
LVR(S) $150-6-1$	75		148.5	145	141.7	137.5	135	131	127	120.5	114.5	106.5	97.5
$\operatorname{LVR}(\mathrm{S}) 150-6$	75		157	153	149	145	142	139.5	137	130	123.5	116	109

LVS/LVR

Hydraulic Performance Curves

Dimension Drawing

MODEL	DIN FLANGE(LVR, LVS)		D1	D2	$\begin{aligned} & \text { N.W. } \\ & \text { (kgs) } \end{aligned}$
	B1	B1+B2			
200-1-D	907	1467	330	250	311
200-1-C	907	1507	380	280	347
200-1	907	1587	420	305	403
200-2-2D	1101	1781	420	305	447
200-2-2C	1101	1816	470	335	504
200-2-C	1131	1916	510	370	595
200-2	1131	1916	510	370	595
200-3-2D	1325	2170	580	410	748
200-3-C-D	1325	2170	580	410	748
200-3-2C	1325	2170	580	410	748
200-3-D	1325	2170	580	410	748
200-3-C	1325	2170	580	410	748
200-3	1325	2220	580	410	817
200-4-2D	1519	2414	580	410	830
200-4-2C	1519	2619	645	530	1180
200-4-C	1519	2619	645	530	1180
200-4	1519	2619	645	530	1180

MODEL	POWER[kW]	$0\left[\mathrm{~m}^{3} / \mathrm{h}\right]$	100	120	140	160	180	200	220	240
LVR(S)200-1-D	18.5	$\mathrm{H}(\mathrm{m})$	25.5	25	24	23	21.5	20	18	15.5
LVR(S)200-1-C	22		29	28.5	27.5	26.5	25.5	24	22	20
LVR(S)200-1	30		38.5	38	37.5	36.5	35	34	32.5	30
LVR(S)200-2-2D	37		53	51	49	47	44	41	37	32
LVR(S)200-2-2C	45		59.5	58	56	54	52.5	49	44.5	40.5
LVR(S)200-2-C	55		69	68	66	64	62	59	55.5	51
LVR(S)200-2	55		78.5	77.5	76	74	71.5	69	66	61.5
LVR(S)200-3-2D	75		91.5	89	86.5	83.5	79	75	70	63
LVR(S)200-3--C-D	75		95	93	90	87	83.5	79	73.5	67
LVR(S)200-3-2C	75		99.5	97.5	94.5	91.5	89	84	78.5	72
LVR(S)200-3-D	75		104.5	102.5	100	97	93	89	84.5	77.5
LVR(S)200-3-C	75		108	106	103.5	100.5	97.5	93	88	81.5
LVR(S)200-3	90		117.5	116	113.5	110.5	107	103	99	92
LVR(S)200-4-2D	90		131.5	129	125.5	121	115.5	110	103.5	94
LVR(S)200-4-2C	110		138.5	136	132	128	124	118	111	102.5
LVR(S)200-4-C	110		148	145.5	142.5	138	134	128	122	113
LVR(S)200-4	110		157.5	155.5	152.5	148	143.5	138	132.5	123.5

EVP

Application

- Water supply: Pressure boosting for main pipes and high-rise buildings
- Industrial pressure boosting: Water system, cleaning system, high pressure
washing system and firefighting system
- Pressure boosting for pressure tank, sprinkling irrigation and trichling irrigation
- Air conditioner, cooling system and industrial cleaning

-eatures

- Economic vertical multistage pumps

Applicable for a wide scope of different temperatures, flow rates and pressure ranges

- Water inlet and outlet can be rotated for proper assembly in accordance with installation requirement
Easy installation and maintenance
- Advanced hydraulic model design, featuring stable operation and high efficiency
- Cast iron water inlet and outlet with special anti-rust treatment
- High-strength engineering plastic flow passage components
- Reliable stainless steel welded shaft

Working Conditions

- Liquid temperature: $+5^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$
- Max. ambient temperature: $+40^{\circ} \mathrm{C}$
- Max. pressure: 15 bar
- Alitude: up to 1000 m

Tandard vollage. Three-phase: $380 \sim 415 \mathrm{v} / 50 \mathrm{~Hz}$

Identification Codes

EVP m 2-6
 (Three-phase model without m) ertical Multistage Centrifugal Pump

Materials Table

No.	Pat	Material
1	Fan cover	08F
2	Fan	PP
3	Rear cover	Castiron
4	Bearing	
5	Stator	
6	Rotor	
7	Gasket	Rubber
8	Flange	Castiron
9	Motor bracket	Aluminum
10	Machanical seal	Ceramic/Carbon
11	Pump barrel	Als 304
12	Impeller	Plastic
13	Difuser	Plastic
14	Last stage difiuser	Plastic
15	Capactior be	Plastic

Scope of Performance

Hydraulic Performance Curves

Vertical Multistage Pump

Hydraulic Performance Curves

Hydraulic Performance Curves

EVP

Technical Data

Model		Power (P2)		$0\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	0	1	2	3	4
Single-phase	Three-phase	kW	HP	Q (1/min)	0	16.7	33.3	50	66.7
EVPm2-2	EVP2-2	0.37	0.5	$\underset{(\mathrm{m})}{\mathrm{H}}$	24	23	18	13	6
EVPm2-3	EVP2-3	0.55	0.75		36	33	26	20	9
EVPT2-4	EVP2-4	0.75	1.0		48	45	35	26	11
EVPM2-5	EVP2-5	1.0	1.5		59	57	44	33	15
EVPm2-6	EVP2-6	1.0	1.5		69	65	52	37	18
EVPm2-7	EVP2-7	1.1	1.5		82	75	62	45	25
EVPm2-8	EVP2-8	1.5	2.0		94	87	72	52	28
EVPm2-9	EVP2-9	1.5	2.0		105	98	82	60	35
EVPm2-11	EVP2-11	1.8	2.5		130	119	98	69	37
-	EVP2-13	2.2	3.0		153	142	115	80	39

Model		Power (P2)		0 ($\left.\mathrm{m}^{3} / \mathrm{h}\right)$	0	1	2	3	4	5	6
Single-phase	Three-phase	kw	HP	Q ((1/min)	0	16.7	33.3	50	66.7	83.3	100
EvPm4-2	EVP4-2	0.55	0.75	$\underset{(\mathrm{m})}{\mathrm{H}}$	24	23	22	21	18	15	10
EVPM4-3	EVP4-3	0.75	1.0		37	36	34	33	29	24	16
EvPm4-4	EVP4-4	1.0	1.5		47	46	45	41	36	28	20
EVPm4-5	EVP4-5	1.5	2.0		61	58	57	55	48	39	29
EVPm4-6	EVP4-6	1.5	2.0		74	72	69	66	57	47	36
-	EVP4-7	2.2	3.0		86	83	81	77	68	57	43
-	EVP4-8	2.2	3.0		98	95	92	86	76	63	47
-	EVP4-10	2.2	3.0		116	114	110	102	90	73	57
-	EVP4-12	3.0	4.0		145	142	140	131	115	97	75

Model		Power (P2)		0 ($\left.\mathrm{m}^{3} / \mathrm{h}\right)$	0	1	2	3	4	5	6	7	8	9	10
Single-phase	Three-phase	kW	HP	a (1/min)	0	16.7	33.3	50	66.7	83.3	100	116.7	133.3	150	166.7
EvPm6-3	EVP6-3	1.1	1.5	$\underset{(m)}{\text { H }}$	30	29.5	29	28.5	28	27	26	24.5	23	21	19
EVPm6-4	EVP6-4	1.5	2.0		40	38.5	37.5	37.3	37	36	34	33.5	32	30	27
-	EVP6.5	2.2	3.0		50	49	48.5	48.3	48	45	43	42	41	39	36
-	EVP6-6	2.2	3.0		58	56	54	53.5	53	52	51	48	45	41	40
-	EVP6-7	3.0	4.0		68	67	66.5	65	63.5	62	60	58	56	54	51
-	EVP6.8	3.0	4,				6,	72				5		59	

Model		Power (P2)		$\begin{aligned} & \mathrm{Q}\left(\mathrm{~m}^{3} / \mathrm{h}\right) \\ & \mathrm{O}(\mathrm{l} / \mathrm{min}) \end{aligned}$	0	$\begin{array}{\|c\|c\|} \hline 16.7 \end{array}$	$\begin{array}{\|c\|} \hline 2 \\ \hline 33.3 \\ \hline \end{array}$	$\frac{3}{50}$	$\begin{aligned} & \hline 4.5 \\ & \hline 75 \\ & \hline \end{aligned}$	$\frac{6}{100}$	$\frac{7.5}{125}$	$\frac{9}{150}$	$\begin{aligned} & 10.5 \\ & 175 \\ & \hline \end{aligned}$
Single-phase	Three-phase	kw	HP										
EVPm6H-3	EVP6H-3	1.1	1.5	$\underset{(\mathrm{m})}{\mathrm{H}}$	39	38	37	35	33	29	24	18	10
EVPm6H-4	EVP6H-4	1.5	2		52	51	49	47	44	39	32	25	14
EVPm6H-5	EVPGH-5	1.8	2.5		64	62	60	58	54	47	38	28	16
-	EVPGH-6	2.2	3		76	74	71	68	63	56	45	34	20
-	EVP6H-8	3.0	4		103	100	97	95	90	80	66	50	31
-	EVPGH-10	4.0	5.5		130	127	124	121	114	103	86	66	41

Model	Power (P2)		$0\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	0	2	4	6	8	10	12	14	16
Three-phase	kW	HP	Q ((1/min)	0	33	67	100	133	167	200	233	267
EVP10H-3	3.0	4.0	$\underset{(\mathrm{m})}{\mathrm{H}}$	56	55	54	52	49	46	42	39	29
EvP10H-4	4.0	5.5		75	74	72	70	67	64	60	53	43
EVP10H-5	5.5	7.5		93	91	87	84	81	77	72	64	55
EVP10H-6	5.5	7.5		113	110	107	104	100	96	87	78	68
EVP10H-7	7.5	10		132	128	124	120	116	112	103	93	80
EVP10H-8	7.5	10		150	147	143	139	134	127	120	108	92

Dimension

Model		$\begin{array}{\|c\|} \hline \text { Power (P2) } \\ \hline \\ \hline \end{array}$	A	B	c	D	E	F	G	H	K	L
Single-phase	Three-phase											
EvPm2-2	EVP2-2	0.37	382	122	193	110	202	114.5	G1	G1	166	140.5
EVPm2-3	EVP2-3	0.55	406	146	193	110	202	114.5	G1	G1	166	14.5
EVPm2-4	EVP2-4	0.75	430	170	193	110	202	114.5	G1	G1	166	140.5
EVPm2-5	EVP2-5	1.0	454	194	193	110	202	114.5	G1	G1	166	14.5
EVPM2-6	EVP2-6	1.0	478	218	193	110	202	114.5	G1	G1	166	140.5
EVPm2-7	EvP2-7	1.1	545	248.5	210	125	202	114.5	G1	G1	166	14.5
EVPm2-8	EvP2-8	1.5	569	272.5	210	125	202	114.5	G1	G1	166	14.5
EVPm2-9	EvP2-9	1.5	593	296.5	210	125	202	114.5	G1	G1	166	14.5
EVPm2-11	EVP2-11	1.8	641	344.5	210	125	202	114.5	G1	G1	166	14.5
-	EVP2-13	2.2	689	392.5	210	125	202	114.5	G1	G1	166	14.5
EVPm4-2	EVP4-2	0.55	382	122	193	110	202	114.5	G1	G1	166	14.5
EVPm4-3	EVP4-3	0.75	406	146	193	110	202	114.5	G1	G1	166	14.5
EVPm4-4	EVP4-4	1.0	430	170	193	110	202	114.5	G1	G1	166	14.5
EVPm4-5	EVP4-5	1.5	497	200.5	210	125	202	114.5	G1	G1	166	140.5
EVPm4-6	EVP4-6	1.5	521	224.5	210	125	202	114.5	G1	G1	166	14.5
-	EVP4-7	2.2	545	248.5	210	125	202	114.5	G1	G1	166	140.5
-	EVP4-8	2.2	569	272.5	210	125	202	114.5	G1	G1	166	14.5
-	EVP4-10	2.2	617	32.5	210	125	202	114.5	G1	G1	166	140.5
-	EVP4-12	3.0	731	374	240	141	218	121.5	G1	G1	166	14.5
EvPm6-3	EVP6-3	1.1	487	190	210	125	198.5	110	G11/4	G11/4	166	14.5
EvPm6-4	EVP6-4	1.5	524	227	210	125	198.5	110	G11/4	G11/s	166	14.5
-	EVP6-5	2.2	561	264	210	125	198.5	110	G11/4	G11/4	166	14.5
-	EVP6-6	2.2	598	301	210	125	198.5	110	G11/4	G11/4	166	14.5
-	EVP6-7	3.0	685	338	221	134	198.5	110	G11/4	G11/4	166	14.5
-	EVP6-8	3.0	722	375	221	134	198.5	110	G11/4	G11/4	166	14.5
EVPm6H-3	EVP6\%-3	1.1	457	158.5	210	125	202	114.5	G11/\%	G $11 / 2$	166	14.5
EVPmbH-4	EVPGH-4	1.5	483.5	185	210	125	202	114.5	G11/4	$\mathrm{G} 11 / 2$	166	140.5
EVPmbH-4	ЕVPGH-5	1.5	510	211.5	210	125	202	114.5	G11/4	$611 / 2$	166	14.5
-	EVPGH-6	2.2	536.5	238	210	125	202	114.5	G11/4	$\mathrm{G} 11 / 2$	166	140.5
-	EVPGH-8	3.0	655	297.5	210	141	218	121.5	G11/4	G11/2	166	14.5
-	EVP6H-10	4.0	708	350.5	210	141	218	121.5	G11/4	G11/2	166	14.5
-	EVP10H-3	3.0	554.5	187	2410	141	227.5	127.5	G11/4	G11/2	192	164
-	EVP10H-4	4.0	577.5	220	240	141	227.5	127.5	G11/4	G11/2	192	164
-	EVP10H-5	5.5	647	253	262	152	237.5	128.5	G11/4	$\mathrm{G} 11 / 2$	192	164
-	EVP10H-6	5.5	680	286	262	152	237.5	128.5	G11/4	$\mathrm{G} 11 / 2$	192	164
-	EVP10H-7	7.5	713	319	262	152	237.5	128.5	G.11/4	G11/2	192	164
-	EVP10H-8	7.5	746	352	262	152	237.5	128.5	G11/4	G11/2	192	164

ECH

Stainless Steel Horizontal Stainiess Steel Ho
Multistage Pump

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse watering, fish farming and poutrry raising, industrial and mining, water supply and
drainage of enterprises and high-rise buildings, central air conditioner and centralized heating circulation system, etc

Pump

- AISI 304 shaft
- Max. liquid temperature: $+85^{\circ} \mathrm{C}$
- Altitude: up to 1000 m
- Max. inlet pressure: limited by max
- Max. inlet pressure: limited by max. operating pressure
- Liquid PH Value: $4-10$

Motor

- IE2 motor (IE3 motor available on request)
- Motor with copper winding
- Built-in thermal protector for single phase motor
- Insulation class: $:$ F
- Insulation class: F
- Protection class: P55 $1{ }^{\circ}$

Identification Codes
ECH (m) 2-20 (S)

- Stainless Steel Wetted Parts Impeller Stage $\times 10$ Rated Flow (m^{3} / h)
Single Phase (Three-phase without m)
Stainless Steel Horizontal Multistage Pump

Materials Table

No.	Part	Material
1	Fan cover	08 F
2	Fan	PP
3	Rear cover	zL 102
4	Rotor	
5	Bearing	
6	Terminal box	zL
7	Stator	
8	Front cover	Cast iron/AIS
9	Outtet body	Cast iron/AIS 304
10	Mechanical seal	SidCarbon
11	Postioning sleeve	AISI 304
12	Difuser	AISI 304
13	Sleeve	AISI 304
14	Impeller	Als 304
15	Pump body	Cast iron/AIS 304

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse watering, fish farming and poultry raising, industrial and mining, water
supply and drainage of enterprises and high-rise buildings, central air conditioner and centralized heating circulation system, etc

Pump

- AISI 304 shaft

Max. liquid temperature: $+60^{\circ} \mathrm{C}$
Altitude: up to 1000 m
Max. suction: 8 m
Max. inlet pressure: limited by max. operating pressure
Max. operation pressure: 10 ba

Motor

IE2 motor
Motor with copper winding

- Built-in thermal protector for single phase motor

Insulation class: F

- Protection class: IPX4

Identification Codes
ECH (m) 2-20-F

Materials Table

No.	Part	Material
1	Support	Castiron
2	Base	Q235
3	Stator	zL 102
4	Rear	zL 102
5	Fan	PP-GF15
6	Fan cover	$08 F$
7	Rotor	
8	O-ring	NBR
9	Terminal Box	PP-GF20
10	Mechanical seal	SiclCarbon
11	O-ring	NBR
12	Sleeve	AlSI 304
13	Pump body	HT200
14	Impeller	AISI 304
15	Difuser	AIIS 304

ECH

Stainless Steel Horizontal
Multistage Pump
Scope of Performance - ECH

Scope of Performance - ECH-F

ECH

Stainless Steel Horizonta
Multistage Pump
Hydraulic Performance Curves

Technical Data

Model	Power		Q(m3/h)	1	2	3	4	5	6	7
	kw	HP	Q(Umin)	17	33	50	67	83	0	117
$\mathrm{ECH}(\mathrm{m}) 4-20(\mathrm{~S})$	0.55	0.75	$\underset{(\mathrm{m})}{\mathrm{H}}$	17	16	15	13	12	10	8
ECH(m)4-30(S)	0.55	0.75		27	25	23	21	19	16	13
ECH(m)4-40(S)	0.75	1.0		36	34	32	28	26	22	17
$\mathrm{ECH}(\mathrm{m}) 4-50(\mathrm{~S})$	1.1	1.5		46	43	40	36	33	28	21
$\mathrm{ECH}(\mathrm{m}) 4-60(\mathrm{~S})$	1.1	1.5		55	52	48	43	39	33	26

Dimension

Model	L1	L2	L3	L4	L5	B1	${ }^{\text {B2 }}$	H	H1	A3	$\underset{(\mathrm{Kgs})}{\mathrm{Gw}}$	$\underset{(\mathrm{mm})}{\mathrm{Lxw}} \underset{\mathrm{w}}{ }$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS/20'TEU) } \end{aligned}$
$\mathrm{ECH}(\mathrm{m}) 4-20(\mathrm{~S})$	354	175.5	90	110	108.5	137	109	176.5	71	¢7	13.1	$420 \times 215 \times 243$	121
$\mathrm{ECH}(\mathrm{m}) 4-30$ (S)	381.5	203	90	110	136	137	109	6.5	71	\$7	13.6	$420 \times 215 \times 243$	1215
ECH(m)4-40(S)	408.5	230	90	110	163	137	109	176.5	71	¢7	14.7	$455 \times 215 \times 243$	1170
$\mathrm{ECH}(\mathrm{m}) 4-50$ (S)	484	266	100	130	190	165	125	204.5	80	¢10	21.5	$548 \times 235 \times 268$	800
$\mathrm{ECH}(\mathrm{m}) 4-60$ (S)	511.5	293.5	100	130	217.5	165	125	204.5	80	¢10	22	$548 \times 235 \times 268$	800

Stainless Steel Horizonta
Multistage Pump
Hydraulic Performance Curves

Technical Data

Model	Power		$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	9	12	15	18	21
	kW	HP	Q(U/min)	150	200	250	300	350
$\mathrm{ECH}(\mathrm{m}) 15-10$	1.1	1.5	$\underset{(m)}{\mathbf{H}}$	12.4	11.6	10.6	9.4	8.2
$\mathrm{ECH}(\mathrm{m}) 15-20$	2.2	3		25.6	24.1	22.7	21.1	18.8
ECH15-30	3.0	4		38.7	36.9	34.9	31.9	28.5
ECH15-40	4.0	5.5		51.8	49.7	46.8	42.9	38.3

Dimension

Hydraulic Performance Curves

Technical Data

Model	Power		Q(m/h)	12	16	20	24	28
	kw	HP	Q(I/min)	200	267	33	400	46
ECH(m)20-10	1.1	1.5	$\begin{gathered} \text { H} \\ (\mathrm{m}) \end{gathered}$	12.1	10.8	9.5	7.8	5.7
ECH(m)20-20	2.2	3		26.1	24.4	22.4	19.8	17.2
ECH20-30	4.0	5.5		39.9	38.0	35.5	31.4	26.9
ECH20-40	4.0	5.5		52.7	50.1	45.9	40.3	34.0

Dimension

ECH

Stainless Steel Horizontal
Multistage Pump
Hydraulic Performance Curves

Technical Data

Model	Power		$0\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	0	0.6	1.2	1.8	2.4	3.0	3.6
	kW	HP	Q ($1 / \mathrm{min}$)	0	10	20	30	40	50	60
ECH(m)2-20-F	0.37	0.5	$\underset{(\mathrm{m})}{\mathrm{H}}$	18	16	15	13	12	10	8
ECH(m)2-30-F	0.37	0.5		27	24	22	20	18	16	12
ECH(m)2-40-F	0.55	0.75		35	33	30	26	24	21	16
$\mathrm{ECH}(\mathrm{m}) 2-50-\mathrm{F}$	0.55	0.75		45	40	37	33	30	24	19
ECH(m)2-60-F	0.75	1.0		53	50	45	40	36	30	23

Dimension

Model	L1	L2	L3	L4	L5	L6	H		$\underset{(\mathrm{Kg})}{\mathrm{GW})}$	$\underset{(\mathrm{mm})}{\mathrm{Lxw}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS/20'TEU) } \end{aligned}$
							1~	3~			
$\mathrm{ECH}(\mathrm{m}) 2-20-\mathrm{F}$	333	75	64	138	160	103.5	197.5	187	12.3	$400 \times 205 \times 240$	1386
$\mathrm{ECH}(\mathrm{m}) 2-30-\mathrm{F}$	352	93.5	82.5	138	160	122	197.5	187	12.6	$400 \times 205 \times 240$	1260
$\mathrm{ECH}(\mathrm{m}) 2$-40-F	370	112	101	138	160	140.5	197.5	187	13.3	$400 \times 205 \times 240$	1386
$\mathrm{ECH}(\mathrm{m}) 2$ 2-50-F	389	130.5	119.5	138	160	159	197.5	187	13.8	$400 \times 205 \times 240$	1260
$\mathrm{ECH}(\mathrm{m}) 2-60-\mathrm{F}$	407	149	138	138	160	177.5	197.5	187	14.7	$400 \times 205 \times 240$	1161

Hydraulic Performance Curves

Technical Data

Model	Power		$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0	1	2	3	4	5	6	7
	kw	HP	Q(Umin)	0	17	33	50	67	83	100	117
ECH(m)4-20-F	0.55	0.75	$\begin{gathered} H \\ (\mathrm{~m}) \end{gathered}$	18	17	16	15	13	12	10	8
$\mathrm{ECH}(\mathrm{m}) 4$-30-F	0.55	0.75		28	27	25	23	21	19	16	13
$\mathrm{ECH}(\mathrm{m}) 4$-40-F	0.75	1.0		38	36	34	32	28	26	22	17
$\mathrm{ECH}(\mathrm{m}) 4$-50-F	1.1	1.5		48	46	43	40	36	33	28	21
$\mathrm{ECH}(\mathrm{m}) 4$-60-F	1.1	1.5		58	55	52	48	43	39	33	26

Dimension

Model	L1	L2	L3	L4	L5	L6	H		$\underset{(\mathrm{Kgs})}{\mathrm{cw}}$	$\underset{(\mathrm{mm})}{\mathrm{L} \times \mathrm{w}} \times \mathrm{H}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS/20 TEU) } \end{aligned}$
							$1 \sim$	3~			
ECH(m)4-20-F	342	85.5	74.5	138	160	114	197.5	187	12.8	400x205x240	1386
$\mathrm{ECH}(\mathrm{m}) 4-30-\mathrm{F}$	370	113	102	138	160	141.5	197.5	187	13	$400 \times 205 \times 240$	1386
ECH(m)4-40-F	398	140.5	129.5	138	160	169	197.5	187	14.9	455x205x240	1260
$\mathrm{ECH}(\mathrm{m}) 4-50-\mathrm{F}$	426	168	157	138	160	196.5	197.5	187	15.7	$455 \times 205 \times 240$	1260
$\mathrm{ECH}(\mathrm{m}) 4-60-\mathrm{F}$	453	195.5	184.5	138	160	224	197.5	187	15.9	$485 \times 205 \times 240$	1161

Stainless Steel Horizontal
Multistage Pump
Hydraulic Performance Curves

Technical Data

Model	Power		$Q\left(m^{3} / \mathrm{h}\right)$	0	2	4	6	7	8	9	10	11	12
	kW	HP	Q(Umin)	0	33	67	100	117	133	150	167	183	200
ECH(m)10-10-F	0.75	1.0	$\underset{(\mathrm{m})}{\mathrm{H}}$	10.1	9.8	9.6	9.1	8.7	8.2	. 7	6.8	5.8	-
ECH(m)10-20-F	0.75	1.0		19.5	19	18.7	17.9	17.1	16.3	15.3	14	12.5	10.6
ECH(m) 10-30-F	1.1	1.5		29.3	28.6	28.3	27.1	26.3	24.9	23.4	21.4	19.3	16.9
$\mathrm{ECH}(\mathrm{m}) 10-40-\mathrm{F}$	1.5	2.0		38.1	39.6	39.8	38.6	37.6	35.9	33.9	31.2	28.2	24.6
ECH(m)10-50-F	2.2	3.0		49.9	49.2	49.1	47.8	46.4	44.4	42.2	39.5	35.9	31.1

Dimension

Model	L1	L2	L3	L4	L5	L6	H		$\underset{(\mathrm{Kg} \mathrm{~s})}{\mathrm{cw}}$	$\underset{(\mathrm{mm})}{\mathrm{Lx} \times \mathrm{H}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCSI20 TEU) } \end{aligned}$
							1~	3~			
ECH(m)10-10-F	398	122	111	138	160	120	232.5	226	21.5	$435 \times 275 \times 310$	896
$\mathrm{ECH}(\mathrm{m}) 10-20-\mathrm{F}$	398	122	111	138	160	120	232.5	226	21.9	$435 \times 275 \times 310$	896
ECH(m)10-30-F	428	152	141	138	160	150	232.5	226	24.3	$465 \times 275 \times 310$	756
ECH(m)10-40-F	530	194	183	138	160	187	236	230	26.1	$575 \times 275 \times 310$	686
ECH(m)10-50-F	560	224	213	138	160	217	242	230	30.4	$605 \times 275 \times 310$	637

ECH

Stainless Steel Horizontal
Stainiess Steel Horizonta
Multistage Pump
Hydraulic Performance Curves

Technical Data

Model	Power		$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0	4	8	12	16	20	24	28
	kw	HP	Q(Umin)	0	67	133	200	267	333	400	467
ECH(m)20-10-F	1.1	1.5	$\underset{(m)}{H}$	13.6	13.3	12.8	12.1	10.8	9.5	7.8	5.7
ECH(m)20-20-F	2.2	3		28.5	27.8	27.0	26.1	24.4	22.4	19.8	17.2
ECH20-30-F	4.0	5.0		42.5	41.6	40.9	39.9	38.0	35.5	31.4	26.9
ECH2O-40-F	4.0	5.0		56.6	55.2	54.2	52.7	50.1	45.9	40.3	34.0

Dimension

Model	L1	L2	L3	L4	L5	L6	81	B2	H		H1	(Kgs)	$\underset{(\mathrm{mm})}{\mathrm{L} \times \mathrm{H}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS/20'TEU) } \end{aligned}$
									1~	3~				
ECH(m)20-10-F	419	142	131	138	160	142	130	108	232.5	226	110	23	$465 \times 275 \times 310$	756
ECH(m)20-20-F	485	149	138	138	160	142	130	108	242	230	110	29.2	$530 \times 275 \times 310$	696
ECH20-30-F	546	192	190	190	230	185	180	140	-	250	120	37.3	$590 \times 275 \times 310$	536
ECH20-40-F	591	237	217	190	230	230	180	140	-	250	120	46.5	$635 \times 275 \times 310$	430

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhous pipeline pressurization, garden watering, vegetable greenhouse
watering, fish farming and poultry raising, industrial and mining, wate watering, fish farming and poultry raising, industrial and mining, water
supply and drainage of enterprises and high-rise buildings, central air conditioner and centralized heating circulation system, etc

Pump

- AISI 304 shaft

Max. liquid temperature: $+40^{\circ} \mathrm{C}$
Altitude: up to 1000 m
Max. suction: 8 m
Max. inlet pressure: limited by max. operating pressure
Max. operation pressure: 8 bar
Liquid PH Value: 6.5-8.5

Motor

- IE2 Motor (IE3 motor available on request)

Motor with copper winding

- Built-in thermal protector for single phase motor

Insulation class: F

- Protection class: IP55

Identification Codes
ECH (m) 2-30-D

Materials Table

No.	Part	Material
1	Pump body	Cast iron
2	Shat end sleeve	AISI304
3	Snap ring	PTFE
4	Difuser	${ }^{\text {AlSI304 }}$
5	Impeller	AISI304
6	Sleeve	AISI304
7	Mechanical seal	SiclCarbon
8	Fan cover	$08 F$
9	Fan	PP
10	Rear cover	ZL102
11	Bearing	
12	Stator	
13	Rotor	
14	Outtet body	Castiron
15	Collar	PTFE
16	Support	PTFE

ECH

Stainless Steel Horizontal
Multistage Pump
Hydraulic Performance Curves

Technical Data

Model	Power		Q(m³/h)	0.6	1.2	1.8	2.4	3.0	3.6
	kW	HP	Q(Umin)	10	20	30	40	50	60
ECH(m)2-20-D	0.37	0.5	$\underset{(\mathrm{m})}{\mathrm{H}}$	16	15	13	12	10	8
$\mathrm{ECH}(\mathrm{m}) 2-30-\mathrm{D}$	0.37	0.5		24	22	20	18	16	12
$\mathrm{ECH}(\mathrm{m}) 2-40-\mathrm{D}$	0.55	0.75		33	30	26	24	21	16

Dimension

Model	L1	L2	L3	A1	A2	cW(kg)		$\underset{(\mathrm{mm})}{\mathrm{L} \times \mathrm{w}}$	$\begin{aligned} & \text { (PCSantity } \\ & \text { (PCSI }{ }^{2} \text { TEU) } \end{aligned}$
						$1 \sim$	$3 \sim$		
ECH(m)2-20-D	324	140	101	G1	G1	10.3	10.7	$375 \times 185 \times 237$	1674
$\mathrm{ECH}(\mathrm{m}) 2-30-\mathrm{D}$	342	158	119	G1	G1	10.7	11	$375 \times 185 \times 237$	1674
$\mathrm{ECH}(\mathrm{m}) 2-40-\mathrm{D}$	360	176	137	G1	G1	12.4	12.6	$420 \times 185 \times 237$	1508

EDH

Stainless Steel Horizontal

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse watering, fish fraingage of enterprises and high-rise buildings, central air conditioner and centralized heating circulation system, etc

Pump

- AISI 304 shaft
- Max. liquid temperature: $+85^{\circ} \mathrm{C}$
- Altitude: up to 1000 m
- Max. inlet pressure: limited by
- Max. inlet pressure: limited by max. operating pressure

Liquid PH Value: 4-10

Motor

- IE2 motor (IE3 motor available on request)
- Motor with copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: P55 $1{ }^{\circ}$

Identification Codes
EDH (m) 2-30

Rated Flow ($\mathrm{m}^{3} / \mathrm{h}$)
Single Phase (Three-phase model without m)

Materials Table

No.	Pat	Material
1	Pump body	Al\| 304
2	Support	zL 102
3	Bottom plate	Castiron
4	Stator	
5	Rotor	
6	Bearing	
7	Rear cover	zL 102
8	Fan	PP
9	Fan cover	08F
10	Bracket cover	AISI 304
11	Mechanical seal	SiclCarbon
12	Positioning sleeve	Als 304
13	Diffuser 3	AIIS 304
14	Diffuser 2	AIIS 304
15	Sleeve	AlSI 304
16	Impeller	AIIS 304
17	Diffuser 1	AlSI 304
18	Pressure plate	Alsi 304
19	Spacer bush	AIIS 304

Application

- It is applicable to household water supply, equipment support, pipeline pressurization, garden watering, vegetable greenhouse Watering, fish farming and poultry raising, supply and drainage
of enterprises and high-rise centralized heating circulation system, etc.

Pump

AISI304 shaft
Max. liquid temperature: $+60^{\circ} \mathrm{C}$

- Altitude: up to 1000
- Max. inlet pressure: limited by max. operating pressure

Max. operation pressure: 10 bar

- Liquid PH value: 6.5-8.5

Motor

IE2 motor
Motor with copper winding

- Built-in thermal protector for single phase motor

Insulation class: F

- Protection class: IPX4

Identification Codes
EDH (m) 2-20-F

Materials Table

No.	Pat	Material
1	Support	zL 102
2	Base	W235
3	Stator	
4	Bearing	
5	Rotor	
6	Rear	ZL 102
7	Fan	PP
8	Fan cover	O8F
9	Pump body	AIIS 304
10	Spacer bush	AIIS 304
11	Pressure plate	304
12	Difluser1	AIIS 304
13	Tension plate	AlII 304
14	Impeller	AIIS 304
15	Sleeve	AIIS 304
16	Diffuser2	AIIS 304
17	Diffuser3	AIIS 304
18	Mechnical seal	SiclCarbon
19	Bracket cover	AIIS 304
20	Terminal cover	Plastic

Stainless Steel Harizonta
Multistage Pump

Scope of Performance - EDH

Scope of Performance - EDH-F

Hydraulic Performance Curves

Technical Data

Model	Power		Q(mh $/ \mathrm{h}$)	0.5	1	1.5	2	2.5	3	3.5	4
	kW	HP	Q(Umin)	8.3	16.7	25	33.3	41.7	50	58.3	66.7
EDH(m)2-20	0.37	0.5	$\begin{gathered} \text { H} \\ (\mathrm{m}) \end{gathered}$	16.7	16.2	15	14	11	10.6	8.8	6.5
EDH(m)2-30	0.37	0.5		25.8	24.3	23.8	21.3	17	16.1	12.5	7.2
EDH(m)2-40	0.55	0.75		34.8	34.1	33.2	30.7	23	22.9	18.4	12.6
EDH(m)2-50	0.55	0.75		43.5	42.1	39.5	35.9	29	25.7	19.6	13.5
EDH(m)2-60	0.75	1.0		50.8	49.2	45.6	41.5	35	30.4	23.4	14.3

Dimension

Model	L	A	c	D	E	F	G	H	J	m	N	$\underset{(\mathrm{kgs})}{(\mathrm{kw}}$	$\underset{(\mathrm{mm})}{\mathrm{L} \times \mathrm{w}} \mathrm{H}$	
EDH(m)2-20	427	180	138	160	108	130	G1	216	110	¢195	103	10.7	$465 \times 225 \times 270$	1044
EDH(m)2-30	427	180	138	160	108	130	G1	216	110	¢195	103	11.1	$465 \times 225 \times 270$	1044
EDH(m)2-40	427	180	138	160	108	130	G1	216	110	¢195	103	12.4	$465 \times 225 \times 270$	1044
EDH(m)2-50	427	180	138	160	108	130	G1	216	110	¢195	103	12.8	$465 \times 225 \times 270$	1044
EDH(m)2-60	427	180	138	160	108	130	G1	216	110	Ф195	103	13.8	$465 \times 225 \times 270$	1044

Stainless Steel Harizontal
Multistage Pump

Hydraulic Performance Curves

Technical Data

Model	Power		$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	1	2	3	4	4.5	5	6	7
	kW	HP	Q(Umin)	17	33	50	67	75	83	100	117
EDH(m)4-20	0.5	0.7	$\underset{(\mathrm{m})}{\mathrm{H}}$	8	17.2	16.1	14.3	12	3	6.3	2.3
EDH(m)4-30	0.55	0.75		26.7	26.4	24.6	22.1	18	16.8	13.5	7.3
EDH(m)4-40	0.75	1.0		36.1	35.2	32.9	29.9	25	24.7	18.6	9.2
EDH(m)4-50	1.1	1.5		45.7	43.6	40.5	37	32	31.8	21.8	10
EDH(m)4-60	1.1	1.5		53.6	52	47	42.5	37	35	23	12

Dimension

Model	L	A	c	D	E	F	G	H	J	m	N	$\underset{(\mathrm{Kgs})}{(\mathrm{GW}}$	$\underset{(\mathrm{mm})}{\mathrm{L} \times \mathrm{w}} \times \mathrm{H}$	$\begin{aligned} & \text { (PCSI20.Tity } \\ & \text { (PCU }) \end{aligned}$
EDH(m)4-20	427	180	138	160	108	130	G11/4	216	110	¢195	103	11.5	$465 \times 225 \times 270$	04
EDH(m)4-30	427	180	138	160	108	130	G11/4	216	110	¢195	103	12.9	$465 \times 225 \times 270$	1044
EDH(m)4-40	427	180	138	160	108	130	$\mathrm{G} 1^{1 / 4}$	216	110	¢195	103	13.8	$465 \times 225 \times 270$	1044
EDH(m)4-50	480	180	138	160	108	130	G11/4	245	120	¢195	103	18.2	$515 \times 225 \times 297$	870
EDH(m)4-60	480	180	138	160	108	130	$\mathrm{G} 1^{1 / 4}$	245	120	Ф195	103	18.6	$515 \times 225 \times 297$	870

Hydraulic Performance Curves

Technical Data

Model	Power		Q(m³/h)	6	7	8	9	10	11	12	13	14
	kw	HP	Q(Umin)	100	117	133	150	167	183	200	217	233
EDH(m)10-10	0.75	1.0	$\underset{(\mathrm{m})}{\mathrm{H}}$	9.1	8.7	8.3	7.8	7.1	6.4	5.4	4.4	3.1
EDH(m)10-20	0.75	1.0		17.9	17.1	16.3	15.3	13.9	12.4	10.7	8.4	6.2
EDH(m)10-30	1.1	1.5		27.5	26.5	25.2	23.6	21.7	19.3	17	14	10
EDH(m)10-40	1.5	2.0		38.7	37.2	35.9	33.9	31.6	28.7	24.9	19.7	15.9
EDH(m)10-50	2.2	3.0		47.2	45.4	43.6	41	38.2	34.2	30	24.5	18

Dimension

Model	L	A	c	D	E	F	G	H	J	m	N	$\underset{(\mathrm{Kgs})}{\mathrm{Gw}}$	$\underset{(\mathrm{mm})}{\mathrm{L} \times \mathrm{H}}$	$\begin{aligned} & \text { (PCSR20 Tity } \\ & \text { (PCUS } \end{aligned}$
$\mathrm{EDH}(\mathrm{m}) 10-10$	568	278	138	160	108	130	G2	245	120	Ф233	140	21.5	$610 \times 265 \times 317$	540
EDH(m)10-20	568	278	138	160	108	130	G2	245	120	¢233	140	22	$610 \times 265 \times 317$	540
EDH(m)10-30	568	278	138	160	108	130	G2	245	120	233	140	23	$610 \times 265 \times 317$	540
EDH(m) 10-40	626	287	138	160	108	130	G2	248	120	¢233	140	29	660x265x317	480
EDH(m)10-50	626	287	138	160	108	130	G2	248	120	Ф233	140	30.7	660x265x317	480

Stainless Steel Horizontal
Multistage Pump
Hydraulic Performance Curves

Technical Data

	Power		Q(mh $/ \mathrm{h}$)	9	11	13	15	17	19	22	25	28
	kW	HP	Q(Umin)	150	183	217	250	283	317	367	417	467
EDH(m)15-10	1.1	1.5	$\begin{gathered} \underset{(\mathrm{m})}{\mathrm{H}} \end{gathered}$	11.6	11	10.4	9.7	9.1	8.5	7.7	5.9	4.8
EDH(m)15-20	2.2	3.0		25.4	24.5	23.4	22.2	1.1	19.7	17.4	15	12
EDH15-30	3.0	4.0		38.4	37.2	35.8	34.1	32.3	30.2	26.6	22.8	18.8

Dimension

Model	L	A	c	D	E	F	G	H	J	m	N	$\underset{(\mathrm{Kgs})}{\mathrm{GW}}$	$\underset{(\mathrm{mm})}{\mathrm{L} \times \mathrm{w}}$	$\begin{aligned} & \text { (PCSI20 Tity } \\ & \text { Qut } \end{aligned}$
EDH(m)15-10	568	278	138	160	108	130	G2	245	120	¢233	140	20.5	610x265x317	540
EDH(m)15-20	626	287	138	160	108	130	G2	248	120	¢233	140	28.8	$660 \times 265 \times 317$	480
EDH15-30	626	287	138	160	108	130	G2	248	120	¢233	140	33	660x265x317	480

Hydraulic Performance Curves

Technical Data

Model	Power		$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	9	12	15	18	20	22	25	28	31
	kw	HP	Q(Umin)	150	200	250	300	333	367	417	467	517
EDH(m)20-10	1.1	. 5	$\underset{(m)}{\mathbf{H}}$	12.6	11.9	11.2	10.2	9.8	8.7	8	6.8	5.2
EDH(m)20-20	2.2	3.0		26.5	25.7	24.5	23.1	22	20.8	18.5	15.9	13.2
EDH20-30	4.0	5.5		41.2	40.3	38.9	36.9	35.3	33.2	30.1	26.3	22

Dimension

Stainless Steel Harizontal
Multistage Pump

Hydraulic Performance Curves

Technical Data

Model	Power		$\mathrm{Q}\left(\mathrm{m}^{3} / \mathrm{h}\right)$	0.5	1	1.5	2	2.5	3	3.5	4
	kW	HP	Q(Umin)	8.3	16.7	25	33.3	41.7	50	58.3	66.7
EDH(m)2-20-F	0.37	0.5	$\underset{(\mathrm{m}}{\mathrm{H}}$	16.7	16.2	15	14	12	10.6	8.8	6.5
EDH(m)2-30-F	0.37	0.5		25.7	24.3	23.8	21.3	19	16.1	12.5	7.2
EDH(m)2-40-F	0.55	0.75		34.9	34.1	33.2	30.7	23	22.9	18.4	12.6
EDH(m)2-50-F	0.55	0.75		43.5	42.1	39.5	35.9	29	25.7	19.6	13.5
EDH(m)2-60-F	0.75	1.0		50.8	49.2	45.6	41.5	35	30.4	23.4	14.3

Dimension

Model	L1	L2	L3	L4	L5	L6	H		H1	H2	${ }_{(\mathrm{Kg} \mathrm{~g})}$	$\underset{(\mathrm{mm})}{\mathrm{L} \times \mathrm{w}}$	$\begin{aligned} & \text { Quanity } \\ & \text { (PCSI20 TEU) } \end{aligned}$
							1~	3~					
EDH(m)2-20-F	426	162	148.5	138	165	120	197.5	187	110	213	10.7	$460 \times 225 \times 275$	1044
EDH(m)2-30-F	426	162	148.5	138	165	120	197.5	187	110	213	11.1	$460 \times 225 \times 275$	1044
EDH(m)2-40-F	426	162	148.5	138	165	120	197.5	187	110	213	12.4	$460 \times 225 \times 275$	1044
EDH(m)2-50-F	426	162	148.5	138	165	120	197.5	187	110	213	12.8	$460 \times 225 \times 275$	1044
EDH(m)2-60-F	426	162	148.5	138	165	120	197.5	187	110	213	13.8	$460 \times 225 \times 275$	1044

Hydraulic Performance Curves

Technical Data

Model	Power		Q(minh)	1	2	3	4	4.5	5	6	7
	kw	HP	Q(Umin)	17	33	50	67	75	83	100	117
EDH(m)4-20-F	0.55	0.75		17.8	17.2	16.1	14.3	12	11.3	6.3	2.3
EDH(m)4-30-F	0.55	0.75		26.7	26.4	24.6	22.1	18	16.8	13.5	7.3
EDH(m)4-40-F	0.75	1.0		39	37	34	31.5	29	27	20	11
EDH(m)4-50-F	1.1	1.5		49	47	44	41	37	35	27	17
EDH(m)4-60-F	1.1	1.5		59	55	52	47	43	39	29	20

Dimension

Model	L1	L2	L3	L4	L5	L6	H		H1	H2	${ }_{\text {(kW }}^{\text {c/ }}$	$\underset{(\mathrm{mm})}{\mathrm{L} \times \mathrm{W}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCST/20 TEU) } \end{aligned}$
							1~	3~					
EDH(m)4-20-F	429	165	151.5	138	165	123	197.5	187	110	215.5	11.5	$460 \times 225 \times 275$	1044
EDH(m)4-30-F	429	165	151.5	138	165	123	197.5	187	110	215.5	12.9	$460 \times 225 \times 275$	1044
EDH(m)4-40-F	429	165	151.5	138	165	123	197.5	187	110	215.5	13.8	$460 \times 225 \times 275$	1044
EDH(m)4-50-F	429	165	151.5	138	165	123	197.5	187	110	215.5	18.2	$460 \times 225 \times 275$	1044
EDH(m)4-60-F	429	165	151.5	138	165	123	197.5	187	110	215.5	18.6	$460 \times 225 \times 275$	1044

Stainless Steel Harizontal
Multistage Pump

Hydraulic Performance Curves

Technical Data

Model	Power		$Q\left(m^{3} / \mathrm{h}\right)$	5	7	8	9	10	11	12	13	14
	kW	HP	Q(Umin)	83	117	133	150	167	183	200	217	233
$\mathrm{EDH}(\mathrm{m}) 10-10-\mathrm{F}$	0.75	1.0	$\underset{(\mathrm{m})}{\mathrm{H}}$	9.1	8.7	8.3	7.8	7	6.4	5.4	4.4	3.1
$\mathrm{EDH}(\mathrm{m}) 10-20-\mathrm{F}$	0.75	1.0		17.9	17.1	16.3	15.3	13.5	12.4	10.7	8.4	6.2
$\mathrm{EDH}(\mathrm{m}) 10-30-\mathrm{F}$	1.1	1.5		27.5	26.5	25.2	23.6	21.5	19.3	17	14	10
$\mathrm{EDH}(\mathrm{m}) 10-40-\mathrm{F}$	1.5	2.0		38.7	37.2	35.9	33.9	31.5	28.7	24.9	19.7	15.9
$\mathrm{EDH}(\mathrm{m}) 10-50-\mathrm{F}$		3.0		47.2	45.4	43.6	41	38	34.2		24.5	18

Dimension

Model	L1	L2	L3	L4	L5	L6	H		H1	H2	(kgs)	$\underset{(\mathrm{mm})}{\mathrm{Lxw}} \underset{\mathrm{w}}{\mathrm{H}}$	$\begin{aligned} & \text { Quantity } \\ & \text { (PCS/20 TEU) } \end{aligned}$
							1~	3~					
EDH(m)10-10-F	557	288	273	140	170	188	232.5	226	120	260	21.5	$610 \times 265 \times 317$	540
EDH(m)10-20-F	557	288	273	140	170	188	232.5	226	120	260	22.0	$610 \times 265 \times 317$	540
EDH(m)10-30-F	557	288	273	140	170	188	232.5	226	120	260	23.0	$610 \times 265 \times 317$	540
EDH(m)10-40-F	600	288	273	140	170	188	236	230	120	260	29.0	$660 \times 265 \times 317$	480
EDH(m)10-50-F	600	288	273	140	170	188	242	230	120	260	30.7	$660 \times 265 \times 317$	480

Hydraulic Performance Curves

Technical Data

Model	Power		Q(m³/h)	9	11	13	15	17	19	22	25	28
	kw	HP	Q(Umin)	150	183	217	250	283	317	367	41	467
EDH(m)15-10-F	1.1	1.5	$\underset{(m)}{H}$	11.6	11	10.4	9.5	9.1	8.5	7.7	5.9	4.8
EDH(m)15-20-F	2.2	3.0		25.4	24.5	23.4	22	21.1	19.7	17.4	15	12
EDH15-30-F	3.0	4.0		38.4	37.2	35.8	34	32.3	30.2	26.6	22.8	18.8

Dimension

Model

Model	L1	L2	L3	L4	Ls	L6	1~	3~	H1	H2	(Kgs)	(mm)	(PCSI20TEU)
EDH(m) $15-10-\mathrm{F}$	557	288	273	140	170	188	232.5	226	120	260	20.5	$610 \times 265 \times 317$	540
EDH(m) $15-20-\mathrm{F}$	600	8	27	140	170	188	242	230	120	260	28.8	$660 \times 265 \times 317$	480
EDH15-30-F	620	288	273	140	170	188	250	250	120	260	33	$660 \times 265 \times 317$	480

EDH

Stainless Steel Horizontal
Multistage Pump
Hydraulic Performance Curves

Technical Data

Model	Power		Q(m/h)	9	12	15	18	20	22	25	28	31
	kw	HP	Q(Umin)	150	200	250	300	333	367	417	467	517
EDH(m)20-10-F	1.1	1.5	$\underset{(\mathrm{m})}{\mathrm{H}}$	12.4	11.9	11.2	10.2	9.5	8.7	8	6.8	5.2
EDH(m)20-20-F	2.2	3.0		26.5	25.7	24.5	23.1	22	20.8	18.5	15.9	13.2
EDH20-30-F	4.0	5.5		41.2	40.3	38.9	36.9	35	33.2	30.1	26.3	22

Dimension

Intelligent Pressure Booster
System

Features

- Constant pressure by integrated variable speed controller

Reliable AISI304 wetted parts for long service life
Easy installation \& operation

- Dry running protection
- Anti freezing
- Compact structur

Product Components
Three phase ECH-(F) or EDH-(F) pump
Integrated inverter (variable speed controller)
5-Way connector with on-return valve
Pressure gauge \& Pressure sensor
5L pressure tank

Pump With Automatic

Electronic Pressure Switch

Features

- Horizontal multistage pump fitted with an electronic pressure switch that starts/stops the pump as required when water tap is turned on/off
- Reliable AISI304 wetted parts for long service life

Dry running protection
Easy installation \& operation

- Compact structure

Product Components
ECH-(F) or EDH-(F) series single phase pum
PS-04 Series Electronic pressure switch(5)
Quick-fit joint

- 1.6 metres power cable with plug

ABK

Application

- Can be used to transfer liquids with light corrosive,requirement for health and containing impurities, etc.
- Suitable for industrial \& domestic sewage system,food \& beverage processing,farming, pumping water from river and lake, etc.
Can be used at full head without overloading motor
Pump
- AISI 304 pump body
- AISI 304 shaft
- Liquid temperature: $-15^{\circ} \mathrm{C} \sim+80^{\circ} \mathrm{C}$

Liquid PH value: 5-9

Motor

- Motor with copper winding
- Built-in thermal protector for single phase motor
- Insulation class: F
- Protection class: IPX4
- Max. temperature: $+40^{\circ} \mathrm{C}$

Identification Codes

ABK 200 D
Single Phase Motor (Omitted for three-phase motor) Power x 100 (HP)
Semi-open Impeller Pump

Technical Data

MODEL		POWER		$0\left(\mathrm{~m}^{3} / \mathrm{h}\right)$	1.2	2.4	3.6	4.8	6	12	18	24	33	42	48	57	66	peller
Single Phase	Three Phase	kW	HP	O. (1/min)	20	40	60	80	100	200	300	400	550	700	800	950	1100	
ABK50D	ABK50	0.37	0.5	$\underset{(\mathrm{m})}{\mathrm{H}}$	11.6	10.5	9.7	8.7	7.5	-	-	-	-	-	-	-	-	9
ABK100D	ABK100	0.75	1		-	-	-	-	8	7	5	-	-	-	.	-	-	12
ABK120D	ABK120	0.9	1.2		-	-	-	-	11	10	9	-	-	-	.	-	-	12
ABK150D	ABK150	1.1	1.5		-	-	-	-	9.5	8.8	7.8	6.7	5	-	-	-	-	12
ABK200D	ABK200	1.5	2		-	-	-	-	12.7	12	11.2	10	8.3	6.5	-	-	-	16
ABK300D	ABK300	2.2	3		-	-	-	-	15	14	13.5	12.7	11.2	9.8	8.9	7.5	-	16
.	ABK400	3	4		-	-	-	-	17.5	16.8	16	15.2	14	12.5	11.5	9.7	7.5	19

Dimension

Hydraulic Performance Curves

Materials Table

Package Information

Model		$\frac{\mathrm{Lm}}{\mathrm{~L}}$	$\underset{(\mathrm{mm})}{\mathbf{w}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	
ABK50(D)	6.5	310	190	215	2130
ABK100(D)	9.6	360	200	235	1566
ABK120(D)	10.7	360	200	235	1566
ABK150(D)	14	420	235	265	1032
ABK200(D)	15.7	420	235	265	1032
ABK300(D)	20.7	475	230	275	864
ABK400	21.8	475	230	275	864

Application

- Water supply: filtration and trasfer at waterworks, regional water supply and pressure boosting in main pipe
- Industrial pressure boosting: Water system, cleaning system
- Industrial water supply: boiler feeding, cooling system, air
conditioning, transportation of light acid and alkal liquid
- Water treatment distillation systems, separators, swimming pools
- Agricultural irrigation, petrochemical industry, medicine and santation, etc.

Operating Conditions

- Thin, clean, non-flammable and explosive, not containing
the liquid with solid particles and fibers
Liquid temperature: $-15^{\circ} \mathrm{C}-+80^{\circ} \mathrm{C}$
- Flow range: $0.7-132 \mathrm{~m}^{3} / \mathrm{h}$
- Head range: $9-58 \mathrm{~m}$
- Ambient temperature range: $-15^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$
- Max. operation: 10 bar
- Altitude: up to 1000 m
- Liquid PH valve: $3-9$

Motor

- IE2 Motor (IE3 motor availableon request for power 29 2kw)
- Totally enclosed \& fan-cooled

Protection class: IP55

- Insulation class: F

Ambient Temperature

Max. Ambient temperature: $+40^{\circ}$. Ambient temperature bove $40^{\circ} \mathrm{C}$, or installation at altitude of more than 1000 m above sea level, require the use of an oversize motor.
Because of low air density and poor cooling effects, the Because of low air density and poor cooling effects, the
motor output power $P 2$ will be decreased. See the picture.
or example, when the pump is installed at altitude of more han 3500 m above sea level, P2 will be decrease to 88%. han to m above sea evel, 2 w will be decrease to 88%.
When the ambient temperature is $70^{\circ} \mathrm{C}$, 22 will be decereased 78\%

Identification Codes

Accessories on Request

Materials Table

No.	Pat	Material
1	Pump body	O6Crasilo
2	Impeler	O6Crionilo
3	O-fing	NER
4	Support cover	O6Cri9Ni10
5	Supoort	нт200
6	Motor	
7	Rotor	06Cr19Ni0/45
8	Nameplate	O6Cri9Ni10
9	Guard plate	06Cr9NVi10
10	Mechanical seal	

How to Read The Curve Charts

Characteristic Curves

MODEL		Power		$\frac{a\left(m^{m} m\right)}{0}$	0		9		12		20	22	24	${ }^{27} \mid$	O=DELIVERY30				6_{60}	72	so	108	114	120	126	
CB5662 Standard	ENT33 Standard	kw	HP		0	100	150	200		300	333	360	400	450	500	600	700	800	1000	1200	1500	1800	1900	2000	2100	2200
xzs50-32-125/11		1.1	1.5		24	21.5	520.5	519.5	. 516	16	13	.	-	-	-	-		-	-	-	-	-	-	-		
XZS50-32-160/15		1.5	2		29.5	27	26	25		21	18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
XZS50-32-160/22		2.2	3		37	33.5	532.5	532	28.	28.5	27	-	-	-	-	-	-	-	-	-	-	-	-	-		
xzs50-32-200/30		3	4		45	41	40	38		34	32	-	-	-	-	-	-	-	-	-	-	-	-	-		
xzs50-32-200/40		4	5.5		55	51	50	49		46	45	43	-	-	-	-	-	-	-	-	-	-	-	-	-	-
xzS66-50-125/15	XZS65-40-125/15	1.5	2		20	-	-	19		18	17	16.5	15	14	12.5	10	-	-	-	-	-	-	-	-	-	-
xzs65-50-125/22	XZS65-40-125/22	2.2	3		26	-	-	23.5		22.5	22	21.5	21	20.5	19.5	16.5	.	-	-	-	-	-	-	-	-	
XZS66-50-160/30	xZS65-40-160/30	3	4		31	-	-	29	27	27.5	27	26.5	25.5	25	24	22	19	.	-	-	-	-	-	-	-	
XzS65-50-160/40	xZS65-40-160/40	4	5.5		39	-	-	35.5		34.5	34	33.5	32.5	32	31	29	26	-	-	-	-	-	-	-		
xzs65-40-200/55		5.5	7.5		47	-	-	43		42.5	42	41.5	41	40.5	39	37	33	-	-	-	-	-	-	-		-
XzS65-40-20077		7.5	10		57	-	-	53	532	52.5	52	51	50	49	48	46.5	44.5	-	-	-	-	-	-	-	-	-
xzs80-65-125/30	XZS65-50-125/30	3	4		22.5			-			-	-	20	19.5	19	18.5	17.5	16	13	9	-	-	-	-		
xzs80-65-125/40	XZS65-50-125/40	4	5.5	H (m)	25.5	-	-	-	-	-	-	-	23	22.5	22	21.5	20.5	20	17	13.5	-	-	-	-		
xzs80-65-160/55	XZS65-50-160/55	5.5	7.5		33	-	-	-	-	-	-	-	29.5	29	28.5	28	27	26	24	20	-	-	-	-	-	
xzs80-65-16077	XZS65-50-160/75	7.5	10		39	-	-	-	-	-	-	-	36	35	34.5	34	33.5	32.5	29	24	-	-	-	-		
*XZ880-50-200/92	XzS66-50-200/92	9.2	12.5		53	-	-	-	-	-	-	-	-	-	48	47.5	46.5	44.5	39.5	34	-	-	-	-		
*XZS80-50-200/110	XZS65-50-200/110	11	15		57.5	.	-	-		-	-	-	-	-	53	51	50.5	50	47	41	-	-	-	-	-	
xzs 100-80-125/40		4	5.5		20	-	-	-	-	-	-	-	-	-	-	17.5	16.5	15.5	14	12	7	-	-	-		
xzs100-80-125/55		5.5	7.5		23	-	-	-	-	-	-	-	-	-	-	21.5	20.5	20	18	16	12	7.5	-	-	-	
xZS 100-80-125/75	xzs80-65-125/75	7.5	10		29	-	-	-		-	-	-	-	-	-	27.5	26.5	25.5	23.5	21.5	17.5	13	12	-		
*XZS100-80-160192	xZS80-65-160/92	9.2	12.5		33						-	-	-		-		31	30	28	26	23	.	-	-		
*XZS 100-80-160/110	\|zs80-65-160/110	11	15		38.5	-	-	-	-	-	-	-	-	-	-	-	36	35	33	31	28	.	-	-	-	-
* XZS 100-65-200/150		15	20		47	-	-	-	-	-	-	-	-	-	-	-	44	43	41	39	36	32	30	28	26	23
* xzS 100-65-200/185		18.5	25		53	-	-	-			-	-	-	-	-	-	51	50	49	48	45	41	39	37	35	33
*xzS100-65-200/220		22	30		58	-	-	-		-	-	-	-	-	-	-	57	56	55	54	51	47	45.5	44	42	40

Hydraulic Performance Curves

Hydraulic Performance Curves

XZS65-40/50	$\sim 2900 \mathrm{rpm}$

XZS

Stainless Steel Standard
Centrifugal Pump

Hydraulic Performance Curves

Hydraulic Performance Curves

XZS65-50	$\sim 2900 \mathrm{rpm}$

Stainless Steel Standard
Centrifugal Pump

Hydraulic Performance Curves

XZS80-50	$\sim 2900 \mathrm{rpm}$

Hydraulic Performance Curves

XZS80-65	$\sim 2900 \mathrm{rpm}$

XZS

Hydraulic Performance Curves

Hydraulic Performance Curves

XZS100-65	$\sim 2900 \mathrm{rpm}$

XZS

Stainless Steel Standard
Centrifugal Pump

Hydraulic Performance Curves

XZS100-80	

(kW)

Installation Sketch

For model $\leq 7.5 \mathrm{kw}$

Model	DN1	DN2		w	L1	L2	m1	m2	m1	n2	m	h2	2-s1	4.s2	B	c	X	Bmax	Hmax	
XZS50-32-125/11	50	32	80	205	140	190	70	122	205	240	112	140	2-812	4-815	65	12	127	240	250	475
Xzs50-32-160/15	50	32	80	207	190	240	70	122	205	240	132	160	2-812	4-815	65	12	127	244	292	477
XZS50-32-160/22	50	32	80	207	190	240	70	122	205	240	132	160	2-812	4-815	65	12	127	244	292	477
XZS50-32-200/30	50	32	80	244	190	240	70	124	225	260	160	180	2-812	4-815	75	15	124	295	340	492
XZS50-32-200/40	50	32	80	244	190	240	70	124	225	260	160	180	2-81	4.815	75	15	124	295	340	492
XZS65-50-125/15	65	50	80	205	160	210	70	121	205	240	112	140	2-81	4-815	65	12	127	240	52	475
xzs65-50-125/22	65	50	80	205	160	210	70	121	205	240	112	140	2-6	4-815	65	12	127	240	252	75
xzs65-50-160/30	65	50	80	244	190	240	70	123	225	260	132	160	2	4-815	75	15	124	260	292	492
XzS65-50-160/40	65	50	80	244	190	240	70	123	225	260	132	160	2-812	$4-815$	75	15	124	260	292	492
XZS65-40-200/55	65	40	40	246	212	265	70	146	245	280	160	180	$2-812$	$4-815$	70	15	142	295	340	563
Xzs65-40-200/75	65	40	40	246	212	265	70	146	245	280	160	180	2-812	$4-815$	70	15	142	295	340	563
xzs80-65-125/30	80	65	65	254	190	240	70	158	225	260	132	160	2-8	4-81	75	15	124	260	292	522
XzS80-65-125/40	80	65	65	254	190	240	70	158	225	260	132	160	2-812	4-®15	75	15	124	260	292	522
XZS80-65-160/55	80	65	65	256	212	265	70	150	245	280	160	180	2-812	$4-815$	70	15	142	280	340	573
Xzs80-65-160/75	80	65	65	256	212	265	70	150	245	280	160	180	2-81	4-81	70	15	142	280	340	573
XZS100-80-125/40	100	80	80	256	212	280	95	155	225	260	160	180	2-812	4-815	75	15	124	280	340	524
xZS100-80-125/55	100	80	80	258	212	280	95	155	245	280	160	180	2-812	4-®15	70	15	142	280	340	575
XzS100-80-125/75	100	80	80	258	212	280	95	155	245	280	160	180	2-812	$4-815$	70	15	142	280	340	575
XZS65-40-125/15	65	40	80	205	160	210	70	121	205	240	112	140	$2-8$	4-815	65	12	127	240	252	475
XZS65-40-125/22	65	40	80	205	160	210	70	121	205	240	112	140	2-812	4-815	65	12	127	240	252	475
XZS65-40-160/30	65	40	80	244	190	240	70	123	225	260	132	160	2-8	4-815	75	15	124	260	292	492
XZS65-40-160/40	65	40	80	244	190	240	70	123	225	260	132	160	2-8	4-61	75	15	124	260	292	492
xzs65-50-125/30	65	50	100	254	190	240	70	158	225	260	132	160	2-812	4-815	75	15	124	260	292	522
XZS65-50-125/40	65	50	100	254	190	240	70	158	225	260	132	160	2-812	4-815	75	15	124	260	292	522
XZS65-50-160/55	65	50	100	256	212	265	70	150	245	280	160	180	2-8	4-®15	70	15	142	280	340	573
XZS65-50-160/75	65	50	100	256	212	265	70	150	245	280	160	180	2-812	4-815	70	15	142	280	340	573
xzs80-65-125/75	80	65	100	258	212	280	95	155	245	280	160	180	2-812	4-815	70	15	142	280	340	575

XZS

Stainless Steel Standard
Centrifugal Pump

Installation Sketch
For model $\geq 9.2 \mathrm{kw}$

	DN1	DN2		w1	w2	L1	L2	m1	m2	m3	m4	11	n		h2	4-S1	4.s2	B1				x			
XZS80-50-200/2	80	50	00	314		212	26	70	146	210	260	254	320	160	200	4-¢14.5	4-ه14	65		20		260	350	420	
XzS80-50-200/110	80	50	100	314		212	26	70	146	210	260	254	320	160	20			65		20		260	350	420	
xzS100-80-160/92	100	80	100	321		212	280	95	155	26	210	254	320	160	20	4-¢14.5	4-¢14	65		20		260	350	420	
XZS100-80-160/110	100	80	100	321	-	212	28	95	155	260	210	254	320	160	200	4-Ф14	4- -	65		20		260	350	420	
XzS100-65-200/150	100	65	100		581	250	320	95	155	310		254	314	180	22		4-¢	60	14.5		20	260	350	440	
XzS100-65-200/185	100	65	100	-	625	250	32	95	155	354		254	314	180	225			60	14.5		20	260	350	440	
XZS100-65-200/220	100	65	100	334	-	250	320	95	155	311	241	279	355	180	225	4-¢14	4-¢14	70				280	355	460	
XZS65-50-200/92	65	50	100	314		212	26	70	146	210	260	254	320	160		-¢	4-ه15	65				260	350	420	
XZS65-50-200/110	65	50	100	314		212	265	70	146	210	260	254	320	160	200	4-¢14.5	4-ه15	65				260	350	420	
XZ	80	65	100	321		212	280	95	155	260	210	254	320	0	200	4-¢	4-\$15	65				260	350	420	
xzS80-65-160/110	80	65	100	321		212	280	95	155	260	210	254	320	160				65				260	350	420	

Flange Dimensions

-	PN16 FLANGES							PN16 FLANGES							
\pm	DN	D	m	c			$\begin{array}{\|c\|} \hline \text { Max. } \\ \hline \text { Thickness } \\ \hline 14 \\ \hline \end{array}$								
8	¢32	140	100	76	4	18									
(0)	940	150	110	84	4	18	14.5)	dN	D	m	${ }^{\circ}$	H		Thickness
- 0	250	165	125	99	4	18	15	O)	8100	220	180	152	8	18	18
	¢65	185	145	118	4	18	16	${ }^{*}$							
$\stackrel{-}{-\mathrm{on}} \mathrm{m}$	¢80	200	160	132	4	18	18	on							

Genera

The series of intelligent pressure boosting system BWS-HY is developed based on PID control technology, to control the pump pressure within a certain range according to the water consumption and easy maintenance.

About BWS

BWS, the abbreviation of Building Water System or Best Water ystem, implies the LEO's ambition to build up the image of best quality product range for water supply system in the market.
BWS series includes WG Non-negative Water Supply System, WX Water Non-negative Supply System, HY Constant Water Supply System and ZY Boosting Water Supply System. Together with WQ sewage pumps, XBD firefighting pumps, LPP in-line pumps and LEN end suction pumps, we have full range to satisfy the applications of secondary water supply, drainage, fire-fighting and HVAC.

Product Composition
The complete device is composed from a pump unit, a pressure tank, pressure sensor, PID and accessories. If necessary, auxiliary pumps or pressure tanks can be added in the device.

Identification Codes

BWS - HY (E) 2LVS15-8 / LVS3-10

BWS

Pressure Booster System

Working Principle

Pressure Tank

Pressure Sensor

Product Overview

The pressure value on the pump outtet is set as a parameter in the water supply equipment. The output frequency is controlled by PID inverter and the rotating speed of pump motor is consequently adjusted to keep the water system pressure constant as the preset pressure value. When the water consumption increases, the frequency is increased accordingly to accelerate pump speed. On the contrary, when the water consumption reduces, the frequency is decreased to reduce the pump speed. In this way, a sufficient pressure (same as the preset value) and water supply (which fluctuates according to the water consumption of the users) in the entire network is guaranteed.

Product Features

This device features stable pressure, non-frequent operation, high efficiency, energy saving and low noise, which can be used to replace traditional high-positioned water tanks or water towers.

- 24 hours constant pressure and automatic activation of auxiliary pumps according to pressure signals
- Smooth start, which eliminates water hammer and extends the service life of motors and pumps
- Protection against under or over voltage, overcurrent, overheat, overpressure as well as no-load of water
- Optional functions available on customer's demand, such as motors in-turn running, sleep mode, etc.
- Digital PID control, which is better than PLC logical control
- Stable operation and easy handling due to high automation and intelligence level
- 100% factory tested with very low failure rate

Applications

- Communities, villas, office buildings, high buildings, hotels, restaurants, etc.

Boilers (cold and hot water)

- Pressure boosting in water plan

Industrial production

- Cooling water circulation system
- Fire fighting

Operating Conditions

- Power: $380 \mathrm{~V}, 50 \mathrm{~Hz}(60 \mathrm{~Hz}$ on request)
- Ambient temperature: $0-40^{\circ} \mathrm{C}$, relative humidity up to 90%, no condensation
- Medium: Clean water or other liquids similar to water in physical and chemical properties
- PH value: 5-9
- Liquid temperature: $0-70^{\circ} \mathrm{C}$

Altitude: up to 1000 m , slope of the base up to 5 degree

Product Functions

- Constant pressure water supply

The pressure of pipe network is controlled within a certain range.

- Alternative operation

The pumps work by turns according to the present timing. The operation time for each pump is roughly equal to prolong the service life of the device.

- Timing function

Working pressure values in different time can be set to meet the demand of water supply

- Sleep mode

The device goes into sleep mode for energy-saving during the night or the water consumption is very few.

- Automatic wake-up

When the pressure of water network reduces to the preset value, the device will be waken up automatically and start to operate.

- Automatic reset

In the event of an inverter failure, the controller will reset the inverter automatically If the reset time is more than preset number, a display of inverter failure will be generated by the system. Maintenance of the inverter is necessary

BWS

Pressure Booster System

Automatic operation at power frequency
In the event of malfunction of the inverter or pressure sensor, the device will operate at power frequency automatically to ensure water supply and sound an alarm.

- Manual/Automatic operation

The device has two operation modes (manual and automatic) for selection.
Automatic start/stop
In case of low water level in the water source, the device will stop the working pumps and sound alarm. When the water level recovers, the device will restart automatically.

Overload protection
When the current of the motor exceeds the preset value for a specified period of time, the controller will shut down the related pump and sound an alarm.

- Water-load protection

If the device has no water or high gas content for a specified period of time, the controller will shut down the entire device. The device runs automatically again, when the water is recovered and the gas inside is exhausted.

- Overpressure protection

When the pressure is higher than preset value for some reason during operation, the device will be shut down automatically to avoid any damage of pipelines.

Low pressure protection
When the pressure of the pipelines is lower than preset value, the device will judge it as a leakage on the pipe network and will be shut down automatically to save the water.

- Alarm function

Any fault during operation will be alarmed and displayed on the LCD screen automatically.

- Information storage

All alarm information can be saved in the controller for inspection.

- Password setting

The device is protected by a password Only the administrator is authorized to change the parameter

- Reset of parameter values

In case of abnormal operation due to change of parameter values by users, the values can be reset to the factory default settings for safe operation.
Overvoltage \& Undervoltage protection
If the voltage is 10% higher or lower than normal voltage, the device will stop working to avoid any damage of the components.

Phase sequence and phase-lacking protection
In case of wrong phase sequence or lack of phase at power supply, the inner control components will protect the device and ensure it's norma operation.

Remote monitoring
The device can be equipped with a remote monitoring system.

Main Parts

A standard BWS-HY system is composed of $2-6$ pcs of pumps which are installed on the same base in parallel and necessary accessories as well as a control box (A pressure tank must be included during installation).

No.	Description	Q'ty
1	Vertical Multistage Pump	$2-6 \mathrm{pcs}$
2	PID Control Box	1 pc
3	Base	1 pc
4	Main Inlet Pipe	1 pc
5	Main Outlet Pipe	1 pc
6	Non Return Valve	1 pc per pump
7	Ball Valve or Butterfly Valve	2 pcs per pump
8	Water Level Detector	1 pc
9	Pressure Sensor	1 pc
10	Pressure Tank	1 pc

Pump Unit

The key operation part of the water supply system. Stainless steel pipelines, flanges, valves and pumps are assembled by unique swing welding technology.

PID Control Box

The key control part of the water supply system. The inverter circuit breaker, relay, contactor, alarm device, signal indicator and remote monitoring device are integrated with reasonable ayout inside the control box.

Pressure Tank
A sealed pressure vessel made of SS 400 or STS 307 for water storage and elimination of water hammer. The membrane is from BUTYL or EPDM. The tank has the effect of compensation of water and pressure, when the system shuts down or the flow becomes small

MEMO
\longrightarrow
\qquad
\qquad \longrightarrow
\qquad
\qquad \longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad

MEMO
\qquad
MEMO MEMO
\qquad

Pump Range

